
Breast Cancer Intrinsic Subtypes:  

A Critical Conception in Bioinformatics 

Heloisa Helena Zaccaron Milioli 

B.Sc. in Biological Sciences

M.Sc. in Genetics

Thesis submitted in fulfilment of the requirements for the degree of 

Doctor of Philosophy 

The University of Newcastle 

Faculty of Science and Information Technology 

School of Environmental and Life Sciences  

Callaghan, NSW 

Australia 

September, 2016 



Bioinformatics in Breast Cancer 

II 



Bioinformatics in Breast Cancer 

III 

Statement of Originality 

The thesis contains no material which has been accepted for the award of any other 

degree or diploma in any university or other tertiary institution and, to the best of my 

knowledge and belief, contains no material previously published or written by another 

person, except where due reference has been made in the text. I give consent to the final 

version of my thesis being made available worldwide when deposited in the University’s 

Digital Repository
1
, subject to the provisions of the Copyright Act 1968.

September, 2016 

__________________________ 

Heloisa Helena Zaccaron Milioli 

__________________________ 

Prof. Pablo Moscato 

1
 Unless an Embargo has been approved for a determined period 



Bioinformatics in Breast Cancer 

IV 

Statement of Authorship 

I hereby certify that the work embodied in this thesis contains a published 

paper/s/scholarly work of which I am a joint author. I have included as part of the 

thesis a written statement, endorsed by my supervisor, attesting to my contribution to 

the joint publication/s/scholarly work.  

September, 2016 

__________________________ 

Heloisa Helena Zaccaron Milioli 

__________________________ 

Prof. Pablo Moscato 



Bioinformatics in Breast Cancer 

V 

Acknowledgements 

I would like to express my deep gratitude to Prof Pablo Moscato. I appreciated the 

guidance and encouragement he has provided throughout my time at Centre for 

Bioinformatics, Biomarker Discovery and Information-Based Medicine (CIBM). I have 

been extremely lucky to have a supervisor who cared so much about my work, and who 

responded to my questions and queries so promptly. I would like to thank my co-

supervisors, A/Prof Regina Berretta and Dr Jannette Sakoff, for their professional 

advices and useful critiques.  

Special thanks should be given to Dr Carlos Riveros for his patient assistance 

and unconditional support. For all the extra hours he spent working with me, the 

constructive criticism and friendly advice during my PhD. I am sincerely grateful for 

sharing his truthful and illuminating views on a number of issues related to the breast 

cancer project. I am also grateful to Dr Renato Vimieiro for the valuable help in data 

management, extensive collaboration and magic proofreading. In particular, I thank 

Inna Tishchenko for her precious effort and intelligence in the analysis of the data.  

I would like to extend my thanks to all CIBM students and collaborators who 

contributed with valuable discussions and enthusiastic encouragements: Ademir 

Cristiano Gabardo, Ahmed Shamsul Arefin, Amer Abu Zaher, Amir Salehipour, Chloe 

Warren, Claudio Sanhueza, Francia Jimenez, Leila Moslemi Naeni, Luke Mathieson, 

Mohammad Nazmul Haque, Nasimul Noman, Natalie de Vries, Nisha Puthiyedth, 

Shannon Fenn. Thanks for sharing the experience, either positive or negative. I also 

acknowledge the Hunter Medical Research Institute (HMRI) and University of 

Newcastle (UoN) staffs for sharing an amazing productive environment.  

I express my warm thanks to Jennie Thomas for her enthusiastic support of 

students and researchers through a number of grants and scholarships. Being part of 

your family is a great honour and an enormous pleasure. Thanks for believing in my 

research and for funding my dreams. I am also grateful to A/Prof David Wild for 

guiding me throughout my visit to Bloomington, US.  



Bioinformatics in Breast Cancer 

VI 

Special thanks to my beloved family for their unconditional support! 

Words cannot express how grateful I am to my mother, father, aunt, brother and 

nephew for all of the sacrifices that you’ve made on my behalf. Your positive energies 

have sustained me thus far. I would also like to thank my in-laws for striving towards 

my goal. Finally, I would like express appreciation to my beloved husband, Jorge André 

Martins. I would not be here without him, his patience and love.  



Bioinformatics in Breast Cancer 

VII 

To the best grandmother, 

Helena Mafioleti Zaccaron 

(Wherever you are) 



Bioinformatics in Breast Cancer 

VIII 



Bioinformatics in Breast Cancer 

IX 

Table of Contents 

Acknowledgements V 

Table of Contents IX 

List of Figures XIII 

List of Tables XV 

List of Equations XVII 

Abbreviations XIX 

Achievements XXIII 

CHAPTER 1 1 

1. INTRODUCTION AND OVERVIEW 1 

1.1 Breast Cancer: an Overview 2 

1.2 Bioinformatics Resources and Tools 4 

1.3 Research Motivation 6 

1.3.1 Research Questions 7 

1.4 Research Aims and Thesis Structure 7 

1.5 References 11 

CHAPTER 2 16 

2. BREAST CANCER: CURRENT STATUS AND PERSPECTIVES 16 

2.1 Breast Carcinogenesis 17 

2.2 The Breast Tumour Classification 19 

2.3 Intrinsic Subtypes 24 

2.3.1 Luminal A and B 25 

2.3.2 HER2-enriched 26 

2.3.3 Basal-like 26 

2.3.4 Normal-like 28 

2.3.5 Other groups 28 

2.4 Novel Integrative Clusters 29 

2.5 Predicting Molecular Subtypes 30 

2.6 References 32 



Bioinformatics in Breast Cancer 

X 

CHAPTER 3 40 

3. MICROARRAY TECHNOLOGIES AND ‘OMICS’ DATA SETS 40 

3.1 Microarray technologies 41 

3.1.1 Illumina Approach 44 

3.1.2 Affymetrix Platforms 45 

3.2 The METABRIC Breast Cancer Data Set 46 

3.2.1 Biospecimen Collection and Ethics Approval 46 

3.2.2 Gene Expression Data Description 49 

3.2.3 Genotype Calling 49 

3.2.4 The Breast Cancer Cohort 50 

3.3 ROCK: Integrative Breast Cancer Data 50 

3.4 References 52 

CHAPTER 4 56 

4. IDENTIFICATION OF NOVEL BIOMARKERS FOR BREAST CANCER SUBTYPING 56 

4.1 Introduction 57 

4.2 Methods 58 

4.2.1 Study Design and Computing Resources 58 

4.2.2 Selection of Biomarkers Using the CM1 Score 60 

4.2.3 The Quality of CM1 List Based on Ensemble Learning 61 

4.2.4 Statistical Analysis 61 

4.2.5 Survival Analysis 64 

4.3 Results 64 

4.3.1 Section Description and Resources 64 

4.3.2 Using the CM1 List to Differentiate Breast Cancer Subtypes 65 

4.3.3 The High Levels of Agreement Between CM1 and PAM50 Lists 71 

4.3.4 The Use of an Ensemble Learning with the CM1 List Improves the Subtype 

Distribution in the METABRIC and ROCK Data Sets 76 

4.3.5 Breast Cancer Intrinsic Subtypes Defined by Clinical Markers and Survival 

Curves 79 

4.4 Discussion 85 

4.5 Conclusion 86 

4.6 References 87 

4.7 Supporting Information 91 



Bioinformatics in Breast Cancer 

XI 

CHAPTER 5 125 

5. ITERATIVELY REFINING THE METABRIC SUBTYPE LABELS 125 

5.1 Introduction 126 

5.2 Methods 127 

5.2.1 Transcriptomic Data Set 127 

5.2.2 The Refinement Method 127 

5.2.3 The CM1 Score 129 

5.2.4 Statistical Analysis 129 

5.2.5 Clinical Data and Survival Curves 129 

5.3 Results and Discussion 130 

5.3.1 Discriminative Probes Used to Assign Intrinsic Subtype Labels in the 

Refinement Process 130 

5.3.2 New Subtype Labels Reveal More Reliable Distribution of Clinical Markers 

and Survival Outcomes 131 

5.4 Conclusion 134 

5.5 References 135 

5.6 Supporting Information 137 

CHAPTER 6 155 

6. META-FEATURES FOR PREDICTING BREAST CANCER INTRINSIC SUBTYPES 155 

6.1 Introduction 156 

6.2 Methods 157 

6.2.1 Ethics Statement and Data Description 157 

6.2.2 Study Design and Computing Resources 158 

6.2.3 Statistical Analysis 161 

6.3 Results and Discussion 162 

6.3.1 Thirteen Meta-features Define Breast Cancer Intrinsic Subtypes 162 

6.3.2 An Ensemble Learning Approach Validates the Quality of Meta-features for 

Predicting Subtypes 168 

6.3.3 Expanding Prediction Models Based on Microarray Data 171 

6.4 References 172 

6.5 Supporting Information 177 

CHAPTER 7 181 



Bioinformatics in Breast Cancer 

XII 

7. BASAL-LIKE BREAST CANCER SUBTYPE 181 

7.1 Introduction 184 

7.2 Methods 186 

7.2.1 Breast Cancer Data Sets 186 

7.2.2 Probe Selection Approach 187 

7.2.3 Clustering Basal-like Breast Cancer Samples 188 

7.2.4 Validation across Data Sets 189 

7.2.5 Network Analysis 189 

7.2.6 MicroRNA Differential Expression 190 

7.2.7 Copy Number Aberration Profiles 190 

7.3 Results 191 

7.3.1 Survival-related Probes Defining Basal-like Subgroups 191 

7.3.2 Basal I and Basal II Validated across Independent Data Sets and Microarray 

Platforms 200 

7.3.3 Clinical Features and Survival Outcomes Supporting the Basal-like 

Subgroups 200 

7.3.4 MicroRNAs Differentially Expressed between Basal I and Basal II 203 

7.3.5 Copy Number Aberration Profiles Further Differentiating Basal-like 

Subgroups 206 

7.4 Discussion 209 

7.4.1 Survival-related Probes Defining the Molecular Signature of Basal-like 

Breast Cancer Subgroups 209 

7.4.2 MicroRNA Expression Levels Differentiating Basal I from Basal II 210 

7.4.3 Genomic Aberrations Further Characterise Basal II and Basal I Subgroups212 

7.4.4 Consensus on the Analysis of Basal-like Breast Cancer Subtypes: a Literature 

Overview 213 

7.5 Conclusion 215 

7.6 References 216 

7.7 Supporting Information 225 

CHAPTER 8 241 

8. CONCLUDING REMARKS 241 

8.1 Final Statements 242 

8.2 Future Directions 246 

8.3 Closing Note 248 



Bioinformatics in Breast Cancer  

 

XIII 

 

List of Figures  

 

Figure 3.1 Conceptual view of a cRNA microarray processing. ................................................ 42 

Figure 4.1 The step-by-step process ........................................................................................... 59 

Figure 4.2 The gene expression profile of the balanced top ten probes selected for each of the 

five breast cancer intrinsic subtypes across 997 samples from the discovery set. ...................... 69 

Figure 4.3 Gene expression patterns of the 42 probes selected using the CM1 score ................ 70 

Figure 4.4 The mRNA log2 normalised expression values of 7 novel highly discriminative 

biomarkers across the five intrinsic subtypes ............................................................................. 71 

Figure 4.5 Class distribution in the METABRIC discovery and validation, and ROCK set ...... 77 

Figure 4.6 Similarity between subtypes distribution in the METABRIC discovery and validation 

sets, and in the ROCK set ........................................................................................................... 79 

Figure 4.7 ER marker distribution across subtypes in the METABRIC data sets ...................... 81 

Figure 4.8 PR marker distribution across subtypes in the METABRIC data sets ...................... 82 

Figure 4.9 HER2 distribution across subtypes in the METABRIC data sets .............................. 83 

Figure 4.10 The survival curves for METABRIC discovery and validation sets ....................... 84 

Figure 4.11 The mRNA log2 normalised expression values of 42 probes (A and B) in the CM1 

list across the five intrinsic subtypes in the METABRIC discovery and validation, and ROCK 97 

Figure 5.1 Refinement Method ................................................................................................. 128 

Figure 5.2 The heat map of refined intrinsic features selected using CM1 score ..................... 131 

Figure 5.3 The survival curves for original and refined labels in the METABRIC discovery and 

validation sets............................................................................................................................ 133 

Figure 5.4 Mean Final Classifier Performance, as measured by Fleiss' κ against the final 

ensemble learning labels of all samples, across the 10 different refinement runs .................... 141 

Figure 5.5 Evolution of performance of classifiers along iterations in a typical refinement run. 

The κ values are measured against final ensemble learning labels ........................................... 142 

Figure 5.6 MST-kNN clustering, coloured according to the original METABRIC labels defined 

by the PAM50 method .............................................................................................................. 145 

Figure 5.7 MST-kNN clustering, coloured according to the refined labels using an iterative 

process ...................................................................................................................................... 146 

Figure 5.8 MST-kNN clustering, coloured according to the IntClust classification proposed by 

Curtis et al. (2012) .................................................................................................................... 147 

Figure 6.1 Summary systematic approach ................................................................................ 159 

Figure 6.2 Meta-features selected with the CM1 score in the METABRIC discovery set ....... 164 



Bioinformatics in Breast Cancer 

XIV 

Figure 6.3 Gene expression patterns of the 13 meta-features selected using the CM1 score and 

(α,β)-k-Feature set ..................................................................................................................... 165 

Figure 6.4 Pairwise expression patterns across intrinsic subtypes in the METABRIC discovery 

and validation sets ..................................................................................................................... 166 

Figure 6.5 Individual expression patterns across intrinsic subtypes in the METABRIC discovery 

and validation sets ..................................................................................................................... 167 

Figure 6.6 Graph representing an instance of the (α,β)-k-Feature Set; as per the data defined in 

Table 6.5. ................................................................................................................................... 178 

Figure 6.7 Graph containing a feasible solution for the (α,β)-k-Feature Set problem; as per the 

data defined in Table 6.5. .......................................................................................................... 179 

Figure 7.1 Heat map of the 80-genes signature in METABRIC training set............................. 196 

Figure 7.2 Minimum Spanning Tree of the 80-probe signature ................................................ 197 

Figure 7.3 Survival curves in the METABRIC and ROCK data sets ........................................ 201 

Figure 7.4 The box plot of miRNAs differentiating Basal I and Basal II subgroups ................ 205 

Figure 7.5 Copy number aberration of basal subgroups in METABRIC data set ..................... 207 

Figure 7.6 The heat map of 400 probes in METABRIC training set ........................................ 233 

Figure 7.7 Network analysis of multiple drug targets for breast cancer therapy ....................... 238 

Figure 8.1 t-SNE graph of METABRIC samples coloured according to PAM50 .................... 244 

Figure 8.2 t-SNE graph of METABRIC samples coloured using the refined labels ................. 244 

file:///C:/Users/helmil/Dropbox/PhD/Thesis/Thesis_HeloisaMilioli.docx%23_Toc484080091


Bioinformatics in Breast Cancer 

XV 

List of Tables 

Table 2.1 Primary Tumour (T) .................................................................................................... 21 

Table 2.2 Regional Lymph Nodes (N) ........................................................................................ 22 

Table 2.3 Distant Metastasis (M) ................................................................................................ 22 

Table 2.4 Anatomic stage/prognostic groups .............................................................................. 23 

Table 3.1 METABRIC microarray data description ................................................................... 47 

Table 3.2 Data accession – gene expression and genotyping information.................................. 48 

Table 3.3 Data accession – microRNA expression information ................................................. 49 

Table 3.4 Overview of the ten data sets in the ROCK online portal ........................................... 51 

Table 4.1 CM1 List ..................................................................................................................... 66 

Table 4.2 Scores and ranks for the CM1 list ............................................................................... 67 

Table 4.3 The ensemble learning overall performance on assigning labels to samples in the 

METABRIC discovery and validation sets, and ROCK test set ................................................. 73 

Table 4.4 Contingency tables for predicted labels using classifiers trained with the CM1 list .. 73 

Table 4.5 Contingency tables for predicted labels using classifiers trained with the PAM50 list

 .................................................................................................................................................... 73 

Table 4.6 Contingency tables for predicted labels using classifiers trained with CM1 and 

PAM50 lists ................................................................................................................................ 74 

Table 4.7 Agreement of the 24 classifiers on assigning labels using Fleiss' kappa statistic ....... 75 

Table 4.8 Agreement measured by the Adjusted Rand Index between different labelling ......... 76 

Table 4.9 The CM1 score calculated for each breast cancer subtype ......................................... 91 

Table 4.10 Summary performance of the classifiers using the CM1 list .................................... 92 

Table 4.11 Summary performance of the classifiers using the PAM50 list ................................ 94 

Table 4.12 The agreement between sample labelling with Fleiss’ Kappa measure and the 

Jensen-Shannon divergence of two probability distributions ..................................................... 95 

Table 4.13 The Jensen-Shannon divergence of two probability distributions ............................ 96 

Table 5.1 Contingency table for predicted labels vs. initial subtypes (rows and columns, 

respectively) .............................................................................................................................. 130 

Table 5.2 Number of samples for each clinical marker in the METABRIC data set according to 

the PAM50 method and refinement process ............................................................................. 132 

Table 5.3 Refined subtype labels in the METABRIC data set ................................................. 137 

Table 5.4 List of the 24 classifiers used in the ensemble learning ............................................ 137 

Table 5.5 Average agreement of classifiers per subtype ........................................................... 138 



Bioinformatics in Breast Cancer 

XVI 

Table 5.6 Probe appearance after ten iterative processes and the respective annotation based on 

Dunning et al. (2010) and Illumina array data ........................................................................... 139 

Table 5.7 The percentage of PAM50 labels matching integrative clusters (IntClust 1-10) in the 

METABRIC study ..................................................................................................................... 148 

Table 5.8 The percentage of Refined labels matching integrative clusters (IntClust 1-10) in the 

METABRIC study ..................................................................................................................... 149 

Table 6.1 List of meta-features selected with CM1 score and (α,β)-k Feature set .................... 163 

Table 6.2 Contingency tables for predicted labels using ensemble learning trained with 13 meta-

features Discovery set Validation set ........................................................................................ 168 

Table 6.3 Performance of 22 Weka classifiers on predicting labels in the METABRIC discovery 

and validation sets ..................................................................................................................... 169 

Table 6.4 Fleiss' kappa values and Adjusted Rand Index for the discovery and validation sets170 

Table 6.5 An example of numerical matrix with five features and six samples belonging to class 

F or G. ....................................................................................................................................... 177 

Table 7.1 The 80-genes signature related to survival ................................................................ 198 

Table 7.2 Clinical information of patients and tumour samples in the METABRIC data set ... 202 

Table 7.3 MicroRNAs differentiating basal-like breast cancer subgroups ................................ 203 

Table 7.4 MicroRNAs and corresponding target genes............................................................. 204 

Table 7.5 Cytobands associated with significant CNA acquisitions ......................................... 208 

Table 7.6 Basal-like samples classification for the validation set ............................................. 225 

Table 7.7 Basal-like samples classification for the validation set ............................................. 225 

Table 7.8 The centroids computed for differentiating Basal I and Basal II ............................... 225 

Table 7.9 The functional annotation of G1 probes according to DAVID ................................. 225 

Table 7.10 The functional annotation of G2 probes according to DAVID ............................... 225 

Table 7.11 The functional annotation of G3 probes according to DAVID ............................... 225 

Table 7.12 MicroRNAs differentiating Basal I and Basal II ..................................................... 226 

Table 7.13 MicroRNAs and gene targets in Basal I .................................................................. 227 

Table 7.14 MicroRNAs and gene targets in Basal II ................................................................. 230 

Table 7.15 Summary gene targets and corresponding drugs ..................................................... 237 



Bioinformatics in Breast Cancer  

 

XVII 

 

List of Equations  

 

Equation 4.1 CM1 score ............................................................................................................. 60 

Equation 4.2 Cramer's V ............................................................................................................. 62 

Equation 4.3 Average sensitivity ................................................................................................ 62 

Equation 4.4 Fleiss' kappa........................................................................................................... 63 

Equation 4.5 Adjusted Rand Index ............................................................................................. 63 

Equation 7.1 Normalisation ...................................................................................................... 189 

  



Bioinformatics in Breast Cancer  

 

XVIII 

 

  



Bioinformatics in Breast Cancer 

XIX 

Abbreviations 

AACR 

ACS 

AIHW 

AJCC 

AR 

ARI 

BL1 

BL2 

BLBC 

BLIA 

BLIS 

ChIP-chip 

CIBEX 

CIBM 

CGH 

CNA 

CNV 

CTD 

DamID 

DAVID 

DDBJ 

DNA 

EBI 

EGA 

EpCAM 

ER 

FGED 

FOIPPA 

FS 

GEO 

HER2 

HREC 

Australasian Association of Cancer Registries 

American Cancer Society 

Australian Institute of Health and Welfare 

American Joint Committee on Cancer 

Androgen receptor 

Adjusted Rand Index 

Basal-like 1 

Basal-like 2 

Basal-like breast cancer 

Basal-like immune-activated 

Basal-like immune-suppressed  

Chromatin immunoprecipitation on chip 

Center for information biology gene expression database 

Centre for Bioinformatics, Biomarker Discovery and Information-Based 

Medicine 

Comparative genomic hybridization  

Copy number aberration 

Copy number variation 

Comparative Toxicogenomic Database 

DNA adenine methyltransferase identification   

Database for Annotation, Visualization and Integrated Discovery 

DNA Data Bank of Japan  

Deoxyribonucleic acid  

European Bioinformatics Institute  

European Genome-Phenome Archive 

Epithelial cell adhesion molecule 

Oestrogen receptor 

Functional Genomics Data Society  

Freedom of Information and Protection of Privacy Act 

Feature Selection 

Gene Expression Omnibus 

Human epidermal growth factor receptor 2 

Human Research Ethics Committee 



Bioinformatics in Breast Cancer 

XX 

HTC 

HTS 

ICGC 

IDC 

IHC 

IHGSC 

ILC 

IM 

JS 

Ki-67 

kNN 

LAR 

lincRNA  

MA 

MCC 

MDL 

METABRIC 

MIAME 

microRNA 

MGED 

MS 

MST 

NCBI 

NOS 

NPI 

NSC 

NST 

ORF 

PIPA 

PIPEDA 

PR 

PRC 

RHD 

RNA 

ROCK 

RT-PCR 

High content screening  

High-throughput screening  

International Cancer Genomics Consortium  

Invasive ductal carcinoma 

Immunohistochemical 

International Human Genome Sequencing Consortium 

Invasive lobular carcinoma 

Immunomodulatory 

Jensen Shannon 

Antigen identified by monoclonal antibody Ki-67 

k nearest neighbours  

Luminal androgen receptor 

long intergenic non-coding RNA  

Memetic algorithm 

Matthews’ Correlation Coefficient 

Minimum Description Length Principle 

Molecular Taxonomy of Breast Cancer International Consortium 

Minimum Information About a Microarray Experiment 

miRNA 

Microarray Gene Expression Data Society  

Menopausal status 

Minimum Spanning Tree 

National Center for Biotechnology Information 

Not otherwise specified 

Nottingham prognostic score 

Nearest Shrunken Centroids  

No special type  

Open reading frame 

Personal Information Protection Act 

Personal Information Protection and Electronic Documents Act 

Progesterone receptor 

Priority Research Centres  

Research Higher Degree 

Ribonucleic acid 

Research Online Cancer Knowledgebase 

Reverse-transcriptase Polymerase chain reaction 



Bioinformatics in Breast Cancer  

 

XXI 

 

SAM 

SCM 

SNP 

SSP 

TCGA 

TEND 

TNBC 

TNM 

TTD 

UCSC 

WEKA 

 

Sentrix® Array Matrix 

Subtype Classification Model 

Single nucleotide polymorphism 

Single Sample Predictor 

The Cancer Genome Atlas 

Trends in the Exploration of Novel Drug targets 

Triple-negative breast cancer 

Tumour size, nodes, metastasis 

Therapeutic Target Database  

University of California Santa Cruz 

Waikato Environment for Knowledge Analysis 

 

  



Bioinformatics in Breast Cancer  

 

XXII 

 



Bioinformatics in Breast Cancer  

 

XXIII 

 

Achievements 

 

During my PhD, I applied for grants; submitted manuscripts for publication; and attended 

workshops, conferences and seminars. The relevant achievements are listed as follows: 

 

Grants Awarded 

- Hunter Medical Research Institute, 2014.  

JENNIE THOMAS MEDICAL RESEARCH TRAVEL GRANT (AUD $10,000)  

- Hunter Cancer Research Alliance, 2015.  

HCRA TRAVEL GRANT (AUD $1,000)  

- Hunter Cancer Research Alliance, 2016.  

HCRA PhD Research Award 2016 (AUD $5,000). 

- EMBL Australia PhD, 2016.  

Travel Grant to attend the 18
th

 EMBL PhD Symposium (AUD $3,000). 

- XII ELAG Course Fellowship (USD $700)  

Instituto Genética Para Todos – Brazil (unable to attend) 

 

Papers Published in Journals 

MILIOLI, H.H.; VIMIEIRO, R.; RIVEROS, C.; TISHCHENKO, I.; BERRETTA, R.; 

MOSCATO, P. (2015) The discovery of novel biomarkers improves breast cancer 

intrinsic subtype prediction and reconciles the original PAM50 labels in the 

METABRIC data set. PLoS One; 10(7): 0129711. doi: 10.1371/journal.pone.0129711 

MILIOLI, H.H. (2015). The IMPAKT of breast cancer research: fundamental science and 

clinical medicine. Future Science OA; (0). doi: 10.4155/fso.15.69 

MILIOLI, H.H.; VIMIEIRO, R.; TISHCHENKO, I.; RIVEROS, C.; BERRETTA, R.; 

MOSCATO, P. (2016) Iteratively refining breast cancer intrinsic subtypes in the 

METABRIC dataset BioData Mining; 9:2. doi: 10.1186/s13040-015-0078-9  



Bioinformatics in Breast Cancer  

 

XXIV 

 

TISHCHENKO, I.; MILIOLI, H.H.; RIVEROS, C.; MOSCATO, P. (2016) Extensive 

Transcriptomic and Genomic Analysis Provides New Insights about Luminal Breast 

Cancers. PLoS One; 11(6): e0158259. doi: 10.1371/journal.pone.0158259 

MILIOLI, H.H. Life as an early career researcher: interview with Heloisa Helena Milioli. 

Future Science OA; 1(4) (2016). doi: 10.4155/fsoa-2016-0033. 

MILIOLI, H.H.; TISHCHENKO, I.; RIVEROS, C.; BERRETTA, R.; MOSCATO, P. 

Basal-like breast cancer: molecular profiles, clinical features and survival outcomes. 

BMC Med Genomics; 10(1):19 (2017). doi: 10.1186/s12920-017-0250-9. 

MILIOLI, H.H.; RIVEROS, C.; VIMIEIRO, R.; BERRETTA, R.; MOSCATO, P. 

Meta-features modelling gene expression imbalances: an innovative strategy for breast 

cancer subtype prediction. Manuscript in preparation to be submitted for publication at 

Genomics, Proteomics and Bioinformatics (GPB). 

 

Abstracts Published 

MILIOLI, H.H.; TISHCHENKO, I.; RIVEROS, C.; SAKOFF, J.; BERRETTA, R.; 

MOSCATO, P. Consensus on breast cancer cell lines classification for an effective and 

efficient clinical decision-making. IMPAKT 2015 Breast Cancer Conference. Annals of 

Oncology 26 (suppl 3):iii32-iii33 (2015). doi: 10.1093/annonc/mdv121.08 

MILIOLI, H.H.; TISHCHENKO, I.; RIVEROS, C.; BERRETTA, R.; MOSCATO, P. 

Molecular classification of basal-like breast cancer subtypes based on predictive 

survival markers. IMPAKT 2015 Breast Cancer Conference. Annals of Oncology. 

26 (suppl 3):iii17-iii18 (2015). doi: 10.1093/annonc/mdv117.11 

MILIOLI, H.H., TISHCHENKO, I., RIVEROS, C., BERRETTA, R. &  MOSCATO, 

P. (2015) Basal-like breast cancer subgroups uncovered by genomic and transcriptomic 

profiles and overall survival outcomes. Hunter Cancer Research Alliance Annual 

Symposium. Asia-Pacific Journal of Clinical Oncology 11(Suppl. 5):6-19 (2015). doi: 

10.1111/ajco.12444 

TISHCHENKO, I., MILIOLI, H.H., RIVEROS, C. & MOSCATO, P. How intrinsic 

are luminal breast cancer subtypes? Hunter Cancer Research Alliance Annual 

Symposium. Asia-Pacific Journal of Clinical Oncology 11(Suppl. 5):6-19 (2015). doi: 

10.1111/ajco.12444 



Bioinformatics in Breast Cancer 

XXV 

MILIOLI, H.H., SANHUEZA, C., BERRETTA, R. & MOSCATO, P. (2015) 

ABSTRACT P40 Breast Cancer Molecular Portraits of Intrinsic Subtypes and 

Integrative Clusters in the METABRIC Data Set. Hunter Cancer Research Alliance 

Annual Symposium. Asia-Pacific Journal of Clinical Oncology 12(Suppl. 6):13-34 

(2016). doi: 10.1111/ajco.12618 

Oral Presentations 

MILIOLI, H.H.; VIMIEIRO, R.; TISHCHENKO, I.; RIVEROS, C.; BERRETTA, 

R.; MOSCATO, P. Refining the breast cancer molecular subtypes in the METABRIC 

data set. World Congress on Controversies in Breast Cancer (CoBRA), 2015. 

Melbourne, AU. 

MILIOLI, H.H.; SANHUEZA, C.; RIVEROS, C.; BERRETTA, R.; MOSCATO, P. 

Breast cancer molecular portraits of intrinsic subtypes and integrative clusters in the 

METABRIC data set. Young Scientist Award 2
nd

 World Congress on Controversies 

in Breast Cancer (CoBrCa) 2016. Barcelona, Spain. 

MILIOLI, H.H.; TISHCHENKO, I.; RIVEROS, C.; BERRETTA, R.; MOSCATO, 

P. Basal-like breast cancers uncovered by genomic and transcriptomic profiles and

patients' overall survival. Sydney Cancer Conference (SCC) 2016. Sydney, AU. 

Poster Sessions 

MILIOLI, H.H.; VIMIEIRO, R.; RIVEROS, C.; SAKOFF, J.; BERRETTA, R.; 

MOSCATO, P. Breast Cancer Subtypes Individuation Driving Novel Drug Targets for 

Tailored Therapies. Translational Cancer Research Conference, 2013. Newcastle, AU. 

MILIOLI, H.H.; VIMIEIRO, R.; RIVEROS, C.; BERRETTA, R.; MOSCATO, P. 

Identification of novel biomarkers for predicting breast cancer intrinsic subtypes. 

ASMR Satellite Scientific Meeting, 2014. Newcastle, AU. 

MILIOLI, H.H.; RIVEROS, C.; VIMIEIRO, R.; MOSCATO, P. Meta-features as 

predictors of breast cancer intrinsic subtype in the METABRIC gene expression data 

set. Best Poster Award (Bronze Medal) International Conference on Bioinformatics, 

2014. Sydney, AU. 



Bioinformatics in Breast Cancer 

XXVI 

RIVEROS, C.; MILIOLI, H.H.; VIMIEIRO, R.; BERRETTA, R.; MOSCATO, P. 

Discovery of gene interactions by GPU-enabled computation of pairwise expression 

level metafeatures. International Conference on Bioinformatics, 2014. Sydney, AU. 

MILIOLI, H.H.; RIVEROS, C.; VIMIEIRO, R.; TISHCHENKO, I.; BERRETTA, 

R.; MOSCATO, P. Using an iterative approach to reclassify sample subtypes in the 

METABRIC breast cancer data set. Best Poster Award (Third place) 

BioInfoSummer, 2014. Melbourne, AU. 

MILIOLI, H.H.; TISHCHENKO, I.; RIVEROS, C.; BERRETTA, R.; MOSCATO, 

P. Basal-like breast cancer subsets revealed by survival predictor genes. ASMR

Satellite Scientific Meeting, 2015. Newcastle, AU. 

MILIOLI, H.H.; TISHCHENKO, I.; RIVEROS, C.; BERRETTA, R.; MOSCATO, 

P. Molecular classification of basal-like breast cancer subtypes based on predictive

survival markers. IMPAKT 2015 Breast Cancer Conference. Brussels, BE. 

MILIOLI, H.H.; TISHCHENKO, I.; RIVEROS, C.; SAKOFF, J.; BERRETTA, R.; 

MOSCATO, P. Consensus on breast cancer cell lines classification for an effective 

and efficient clinical decision-making. IMPAKT 2015 Breast Cancer Conference. 

Brussels, BE. 

MILIOLI, H.H.; RIVEROS, C.; VIMIEIRO, R.; MOSCATO, P. Meta-features 

predicting gene expression imbalances across breast cancer intrinsic subtypes. EMBL 

Australia PhD Symposium, 2015. Melbourne, AU. 

TISHCHENKO, I., MILIOLI, H.H., RIVEROS, C. & MOSCATO, P. How intrinsic 

are luminal breast cancer subtypes? Hunter Cancer Research Alliance Annual 

Symposium, 2015. Newcastle, AU. 

MILIOLI, H.H., TISHCHENKO, I., RIVEROS, C., BERRETTA, R. &  MOSCATO, 

P. Basal-like breast cancer subgroups uncovered by genomic and transcriptomic

profiles and overall survival outcomes. Hunter Cancer Research Alliance Annual 

Symposium, 2015. Newcastle, AU. 



Bioinformatics in Breast Cancer 

XXVII 

NAENI, L., MILIOLI, H.H., TISHCHENKO, BERRETTA, R. & MOSCATO, 

P. (2015) A New Clustering Approach Identifies Candidate Biomarkers for Breast

Cancer Subtyping. BioInfoSummer, 2015. Sydney, AU. 

MILIOLI, H.H.; RIVEROS, C.; VIMIEIRO, R.; MOSCATO, P. Meta-features 

predicting gene expression imbalances across breast cancer intrinsic subtypes. Best 

Poster Presentation BioInfoSummer, 2015. Sydney, AU. 

Other Presentations 

Confirmation Year Presentation 

Faculty of Science and IT. The University of Newcastle, 2013. 

RHD candidates are required to submit the ‘Confirmation Year Report’ and present 

the research overview. In August 2013, I presented the preliminary results in the 

Faculty of Science and IT as an open seminar.    

HCRA, ECR and PhD Student (HEAPS) Seminar Series 

Hunter Medical Research Institute. The University of Newcastle, 2014 and 2015. 

The HEAPS seminar series are organised by the Hunter Cancer Research Alliance 

(HCRA) for RHD students and supervisors. It is an opportunity for researchers to 

practice presenting (and critiquing) work in a local and highly supportive 

environment. In 2014 and 2015, I presented and discussed the results of my research 

as well as supported other researchers’ work. 

HUBS3302 Bioinformatics Mini-Conference 

Faculty of Health and Medicine. The University of Newcastle, 2014 and 2015. 

The purpose of this event is to inspire students in the field and, specially, in their final 

project for the discipline. In the 2014 and 2015 Bioinformatics Mini-Conference, 

organised by Belinda Goldie, I presented my research on breast cancer.     



Bioinformatics in Breast Cancer 

XXVIII 

Science and Engineering Challenge 

Faculty of Engineering and Built Environment. The University of Newcastle, 2014, 

2015 and 2016. 

The ‘Science and Engineering Challenge’ organise a number of events aimed at 

challenging students of all different ages in Science and Engineering. As part of the 

team, I coordinated activities in Tamworth (2014), Muswellbrook (2014), Dubbo 

(2015), Newcastle (2015), Central Coast (2016) and Narrabri (2016), and presented 

my research to the Rotary International (Australian Rotary Districts) in Tamworth 

and Dubbo. 

Faculty Progress Seminar 

Faculty of Science and IT. The University of Newcastle, 2015. 

Students in the Faculty of Science and IT are required to present a Progress Seminar 

after completing 2 to 3 years of a PhD. In June 2015, I discussed the overall aims and 

results of my research and outlined my thesis to fellow RHD candidates and 

academics in the school.  

Google Computer Science for High Schools 

Faculty of Engineering and Built Environment. The University of Newcastle, 2015 

and 2016. 

The University of Newcastle's Computer Science 4 High Schools (CS4HS) is an 

introductory workshop for in-service and pre-service teachers (both at primary and 

secondary level), and career advisors focused on developing competencies included in 

the recently approved Digital Technologies curriculum and is accredited by BOSTES. 

In three events, I had the opportunity to explain the relevance of computer science to 

analyse biological/medical data. 

Relevant Activities 

Course: Winter School in Mathematical and Computational Biology 

University of Queensland (UQ), Brisbane, 2013. 



Bioinformatics in Breast Cancer  

 

XXIX 

 

The winter school introduced mathematical and computational biology and 

bioinformatics to advanced undergraduate and postgraduate students, postdoctoral 
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Abstract 

 

 

Breast cancers have been uncovered by high-throughput technologies that allow the 

investigation at the genomic, transcriptomic and proteomic levels. In the early 2000s, the gene 

expression profiling has led to the classification of five intrinsic subtypes: luminal A, luminal B, 

HER2-enriched, normal-like and basal-like. A decade later, the spectrum of copy number 

aberrations has further expanded the heterogeneous architecture of this disease with the 

identification of 10 integrative clusters (IntClusts). The referred classifications aim at explaining 

the diverse phenotypes and independent outcomes that impact clinical decision-making. 

However, intrinsic subtypes and IntClusts show limited overlap. In this context, novel 

methodologies in bioinformatics to analyse large-scale microarray data will contribute to further 

understanding the molecular subtypes. In this study, we focus on developing new approaches to 

cover multi-perspective, highly dimensional, and highly complex data analysis in breast cancer. 

Our goal is to review and reconcile the disease classification, underlying the differences across 

clinicopathological features and survival outcomes. For this purpose, we have explored the 

information processed by the Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC); one of the largest of its type and depth, with over 2000 samples. A series of 

distinct approaches combining computer science, statistics, mathematics, and engineering have 

been applied in order to bring new insights to cancer biology. The translational strategy will 

facilitate a more efficient and effective incorporation of bioinformatics research into laboratory 

assays. Further applications of this knowledge are, therefore, critical in order to support novel 

implementations in the clinical setting; paving the way for future progress in medicine.  

 

 

 

Keywords 

Breast cancer, Intrinsic subtypes, Integrative clusters, IntClusts, Microarray, Gene expression, 

Copy number aberration, MicroRNA, METABRIC, Feature selection, Data mining, Ensemble 
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CHAPTER 1 

1. INTRODUCTION AND OVERVIEW

Chapter 1 is the thesis prospectus that will assist the reader in understanding the context of this 

study on breast cancer. The first two topics, 1.1 Breast Cancer: an Overview and 1.2 

Bioinformatics Resources and Tools, contextualise the significance of investigating this 

disease using promising bioinformatics approaches. Next, the 1.3 Research Motivation 

enlightens the main points underlying this study and the most important questions to be 

addressed. The main goals and the specific aims are defined, for each chapter, in 1.4 Research 

Aims and Thesis Structure, which summarizes the thesis content and the headings choice. 

Additionally, the achievements obtained during the research higher degree (RHD) candidature 

are listed in Achievements and the corresponding work developed at The University of 

Newcastle, between July 2012 and July 2016, in Relevant Activities. The last section,  
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1.5 References, cites the relevant publications supporting this introductory section.  

 

 

 

 

1.1 Breast Cancer: an Overview  

 

Breast cancer is the second most common type of cancer overall, with a high rate of incidence 

among women worldwide (Ferlay et al., 2015; Siegel et al., 2014). In Australia, it is the most 

frequently reported cancer in females, excluding non-melanoma skin cancers. The Australian 

Institute of Health and Welfare estimated that more than 15270 women were diagnosed with 

breast cancer and 3000 died from this disease in 2014 (AIHW & AACR, 2014a, 2014b). The 

lifetime risk of developing breast cancer is 1 in 11 before the age of 75, and 1 in 8 before the 

age of 85 (AIHW & AACR, 2014b). Moreover, a projection of cancer incidence in Australia for 

2020 predicts 17210 new cases of breast cancer among women (AIHW, 2012). Despite the 

increasing incidence, reductions in mortality have been reported, corresponding with advances 

in screening policies and treatment protocols (AIHW & AACR, 2014b). 

As with most cancers, the causes of breast cancer are not completely understood. The 

risks of developing breast cancer have been related to a range of aspects including age, race, 

ethnicity, lifestyle and environment. Hormonal and reproductive factors are particularly 

important and underlie the aspects of menarche, menopause, parity, breastfeeding, oral 

contraceptive intake and menopausal hormone replacement therapy (Barnard et al., 2015; 

Forman et al., 2015). Familial history is another important risk factor. Patients with germ line 

mutations in BRCA1 or BRCA2 genes show an increased predisposition to breast and ovarian 

carcinomas (Miki et al., 1994; Wooster et al., 1995). Two other genes associated with rare 

cancer syndromes, TP53 (Li–Fraumeni syndrome) (Engreitz et al., 2011) and PTEN (Cowden 

syndrome) (Guenard et al., 2007; Lynch et al., 1997), also contribute to the rise in breast cancer 

cases (Lalloo & Evans, 2012). Low-to-moderate penetrant genes/loci may be also involved, 

such as ATM, BRIP1, CDH1, CHEK2, NBS1, PALB2, RAD51 and STK11 (Hollestelle et al., 

2010; Nevanlinna & Bartek, 2006; Shuen & Foulkes, 2011). The number of contributing genes, 
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however, remains under investigation (Duffy et al., 2017; Oldenburg et al., 2007; Stratton & 

Rahman, 2008; Topalian et al., 2016). 

Sporadic mutations, on the other hand, vary markedly between individual tumours 

(Stephens et al., 2012). Genes previously implicated in breast cancer (PIK3CA, AKT1, GATA3, 

RB1, MLL3, MAP3K1 and CDKN1B), and a number of novel significantly mutated genes have 

been identified, including AFF2, CBFB, NF1, RUNX1, PIK3R1, PTPN22, PTPRD, TBX3, 

SF3B1 and CCND3 (TCGA, 2012). The presence of multiple drivers has been associated with 

cancer molecular heterogeneity and subclonal evolution. Changes in gene expression levels 

have also emerged as biomarkers for breast cancer subtyping, such as hormone receptors (ESRI, 

PGR, ERBB2), basal cytokeratins (KRT5, KRT6, KRT17), markers of proliferation (AURKA, 

MELK, MKI67, PCNA), and growth factor receptors (EGFR, VEGFR) (Rakha et al., 2008). 

Overall, these markers have shown potential in predicting the disease behaviour, patients’ 

outcome, and are able to guide clinical decision-making. 

Multi-gene lists and predictor models have been used to reduce the multidimensional 

complexity of breast cancers. The signatures have been reported within the molecular patterns 

strongly correlated to clinical prognosis (Fan et al., 2011; Wang et al., 2005), disease 

progression (Seoane et al., 2014; Venet et al., 2011), and patient survival (Naderi et al., 2006). 

Mammaprint® (Agendia, Huntington Beach, CA) and Oncotype DX®  (Genome Health Inc, 

Redwood City, CA), two commercial assays, are standard examples of genome supervised 

predictors (Glas et al., 2006; Paik et al., 2004). The main purpose is to either delineate treatment 

or anticipate the patient’s outcome (van't Veer & Bernards, 2008) by estimating the likelihood 

of distant recurrence in the five years following diagnosis and the risk of metastasis, 

respectively. Alternatively, the PAM50 method has been proposed to classify tumour subtypes 

according to the correlation with expression values of 50 genes, defined as centroids (Parker et 

al., 2009). New concepts underlying subtype prediction are based on risk models that 

incorporate molecular signatures shared among tumours with analogous behaviour, for a group-

based treatment design. 

In the post-genomic era, microarray integrated applications have enabled the 

identification of relevant markers for a range of distinct purposes: early detection, disease 

prognosis, drug target and tailored therapy (Kulasingam et al., 2010). The genes encountered in 

different studies, nonetheless, are still highly variable, non-overlapping, and generally require 

specialised investigative technologies (Borrebaeck, 2017; Dolled-Filhart et al., 2006), . Despite 

the clear impact molecular profiling has made in improving the way breast cancer is now 

perceived as multiple entities, there is still a great deal of work ahead. The advent of high-
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throughput technologies and the massive amount of information produced offer scientists a 

unique opportunity for uncovering new portraits of breast cancer and determining the 

mechanisms behind the clinical heterogeneity of this disease. Mining putative biomarkers from 

‘Big Data’ sources is therefore a valuable strategy and a great challenge in the field. These 

sources need to be well defined and, ultimately, translated and transformed into laboratory 

assays and clinical applications. The overarching goal is to delineate more effective treatments 

and optimal response in patient care.  

 

1.2 Bioinformatics Resources and Tools 

 

High-throughput biological data can now be analysed and interpreted using the interdisciplinary 

field of bioinformatics. Bioinformatics combines computer science, statistics, mathematics, and 

engineering for the development of software tools and data analytics methods (Yigitoglu et al., 

2015). These subjects are strengthened by the concepts and processes involving DNA, RNA and 

proteins; complex molecules engaged in dynamic and interactive systems. In this setting, 

bioinformatics has firmly established itself as a new discipline in response to the accelerating 

demand for a flexible and intelligent means of storing, managing and querying and, most 

importantly, understanding large amounts of biological information. This subject has, therefore, 

an endless potential (in the 21
st
 century) to evolve as it faces new perspectives that 

simultaneously emerge with data collection and sample analysis (Carrey & Stodden, 2010). 

The release of the public draft of the human genome was the culmination of a pivotal 

bioinformatics and biological endeavour. It brought with it the promises of improving our 

understanding of diverse aspects of molecular biology and clinical medicine (Attwood et al., 

2011; Lander et al., 2001). Initially the main concern of bioinformatics was the creation and 

maintenance of databases for storing biological information such as nucleotide and amino acid 

sequences. Lately, the emphasis has shifted towards actionable insights for the analysis and 

interpretation of data, involving entire cohorts stored across different databases (Hood, 2003). 

These databases were designed with independent interfaces whereby researchers could access 

existing files, submit new data or revise the stored data. The major sequence database is 

GenBank, maintained by the National Center for Biotechnology Information (NCBI) at the 

National Institutes of Health, which comprises an annotated collection of DNA and protein 

sequences. Alternative portals used to browse the human genome (and other sequence-based) 

data are the UCSC Genome Browser, developed at the University of California Santa Cruz 
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(UCSC), and Ensembl, a framework of the European Bioinformatics Institute. The databases are 

constantly upgraded in the integrated and interconnected online environment (Baxevanis, 2009). 

In the early 2000’s, microarrays have gone from obscurity to being almost ubiquitous in 

biological research. Members of the Microarray Gene Expression Data Society (MGED), now 

known as Functional Genomics Data Society (FGED), emphasised the importance of databanks 

to store and share the data within public domains. Peer reviewed repositories also support 

academic and industry standards by promoting wide applications in comprehensive and 

expanded investigations to facilitate biological and biomedical discoveries. Examples of 

databanks are: Gene Expression Omnibus (GEO) stored at the NCBI, ArrayExpress from the 

European Bioinformatics Institute (EMBL-EBI) and CIBEX maintained by the DNA Data Bank 

of Japan (DDBJ). In order to improve the transparency of microarray studies, authors have to 

supply details of samples, protocols and platforms according to the Minimum Information 

About a Microarray Experiment (MIAME) guidelines (Ball et al., 2004; Engreitz et al., 2011). 

For instance, research consortia such as the Molecular Taxonomy of Breast Cancer International 

Consortium (METABRIC), The Cancer Genome Atlas (TCGA) and International Cancer 

Genomics Consortium (ICGC) have published large collections in breast cancer (Verhaak & 

Mills, 2012). However, more robust data sources are yet to be shared (Hayden, 2014). 

 Methodologies for microarray analysis have progressed from simple visual assessments 

of results to a weekly deluge of papers that describe novel algorithms for validating changes in 

the gene expression profile. High levels of data analysis, consequently, require some key 

components – design, pre-processing, inference, classification and validation – to address 

important concepts where consensus has emerged, or in areas yet obscure (Allison et al., 2006). 

Although the available procedures might be bewildering to biologists, bioinformaticians  can 

recognise the competence among the different methods used to deal with multiple data sets 

(Altman & Miller, 2011). The main challenge is the efficient analysis of microarray data 

generated by different research groups across distinct platforms and technologies (Moreau et al., 

2003); alongside the integration of information sources in genomics, transcriptomics, 

proteomics and epigenomics (Su et al., 2012).  

Array technologies such as comparative genomic hybridisation (CGH), single 

nucleotide polymorphism (SNP) detection, gene expression profiling, chromatin 

immunoprecipitation on chip (ChIP-on-chip) and DNA adenine methyltransferase identification 

(DamID) are promising new tools in medical research (Sims, 2009). In particular, high-

resolution DNA copy number aberration (CNA) and variation (CNV) have shown a  potential 

role in breast cancer research (Xu et al., 2012), impacting expression levels and protein structure 
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(Krepischi et al., 2012; Stankiewicz & Lupski, 2010). These high-throughput measurements 

enhance the molecular investigation and allow a faster transition from laboratory findings to 

novel applications in the clinical practice. By modelling and simulating these measures using 

innovative approaches, researchers expect to make rapid progress in science and uncover 

dynamic and complex biological systems (Yao, 2002).  

Bioinformatics is widely used for the identification of candidate genes and proteins, 

from normal cellular activities and altered states in different diseases. It has led to the better 

understanding of intrinsic mechanisms and molecular pathways driving the phenotype of a 

variety of diseases (Huang et al., 2011). Ultimately, the interdisciplinary field allows robust data 

analysis to create more reliable global perspectives from which unifying principles in 

bioinformatics can be discerned to yield a healthier future with personalised medicine (Yulug & 

Gur-Dedeoglu, 2008).  

 

 

1.3 Research Motivation 

 

Breast cancer is a common and heterogeneous disease affecting women of all ages. This 

heterogeneity poses significant challenges not only in breast cancer management, but in 

understanding the biology of tumours and the course of this disease (Dawson et al., 2013). 

Breakthroughs in molecular biology, however, have influenced clinical decision-making. In 

particular, bioinformatics has allowed researchers to inquire more deeply into the nature of 

breast cancer. A possible direction for future research is to look into different groups of patients 

with similar behaviour, focusing on group-based intervention strategies in applied medicine 

(Weigelt et al., 2012). 

In practice, the large scale collection of data raises the urgent need to integrate and 

utilise these robust resources for biomarker discovery and biomedical applications. Relatively 

few methods, however, have shown the capacity of dealing with ‘Big Data’ information sources 

(Dutta et al., 2012). Therefore, novel approaches are valuable for strengthening investigations 

into breast cancer, adding to the breadth of known medicine (Colombo et al., 2011). These facts 

frame not only the study motivation but also the big challenges explored throughout my thesis. 
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1.3.1 Research Questions 

Assuming the intrinsic heterogeneity of human breast cancers and the lack of consensus 

for the disease classification, several important questions need to be answered. Before inquiring 

into those, it is important to stress that a proper classification of breast tumours, especially with 

regard to the analysis of molecular profiles, would lead to the identification of accurate 

biomarkers and to the definition of robust prediction models. The current breast cancer subtypes 

– or the distinct molecular diseases – need to be further explored and validated, and remain the 

objects of medical research. That said, the questions supporting this study are: 

 

“How many groups or different subtypes could be clearly identified in breast 

cancer disease using gene expression microarray data? Are they molecularly 

and clinically well defined?” 

 

“Which genes or signatures are able to individualise the different breast 

cancer subtypes? Are these genes relevant targets for tailored treatment?” 

 

“How could molecular data, including genome and transcriptome microarrays, 

be better combined or integrated to improve the understanding of the disease or 

the subtypes’ classification?” 

 

“Is it possible to link cell line profiles with the breast cancer subtypes in 

order to provide consistent information for ‘in vitro’ drug tests?”  

 

 

1.4 Research Aims and Thesis Structure 
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This is an integrated investigation of breast cancer disease, concentrated on large-scale “Big 

Data” analytics. The overall research objective is to improve the understanding of breast cancer 

molecular architecture by applying sophisticated bioinformatics algorithms. Breast tumours are 

evaluated by the correlations of gene expression, microRNA profiling and CNA patterns, and by 

using methods based in computer science, statistics, mathematics and engineering. Our ultimate 

goal is to be able to link transcript variants and pathways into particular subgroups with 

individual biomarkers for diagnosis, prognosis and treatment of breast carcinomas.  

With regard to the structure of the document, it is important to stress that every chapter 

is an independent section containing a thorough description of methods, results and discussion, 

in the context of the literature. Ultimately, a major conclusion summarises the whole body of 

my research, pointing to overall remarks of each section. To comprehend the thesis structure, 

the appropriate content and specific aims are defined for each chapter as follow: 

 

Chapter 2 – Breast Cancer: Current Status and Perspectives 

Basic concepts covering breast cancer incidence, classification and subtyping are provided in 

this chapter. The extensive literature review embraces the actual data, guidelines and protocols 

used to direct clinical decision-making and to guide future research outcomes. Breast cancer 

related studies were reviewed to establish a consensus on the knowledge of this disease. 

Chapter 3 – Microarray Technologies and ‘Omics’ Data Sets 

The gene expression microarray methodology is carefully described and compared against the 

well-established platforms Illumina and Affymetrix. Public microarray data sets in breast cancer 

are later detailed in the context of this study. More information on the ethics application and 

approval is also provided in this chapter. 

Chapter 4 – Identification of Novel Biomarkers for Breast Cancer Subtyping 

This chapter refers to the manuscript published in PLoS One
2
.  Here I introduce a valuable 

strategy to deal with the challenges of identifying and predicting breast cancer intrinsic 

subtypes. In this chapter, I aim to:  

 Identify novel biomarkers for subtype individuation by exploring the competence of a 

newly proposed method named CM1 score, and; 

 Improve class prediction by applying an ensemble learning approach, as opposed to the 

use of a single classifier. 

                                                      
2
 Milioli, H. H., Vimieiro, R., Riveros, C., Tishchenko, I., Berretta, R., & Moscato, P. (2015). The 

Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and 

Reconciles the Labels in the METABRIC Data Set. PLoS One, 10(7), e0129711. 
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Chapter 5 – Iteratively Refining the METABRIC Subtype Labels 

The content of this chapter is published in BMC BioData Mining
3
. It complements the previous 

analysis by filling the gaps identified in the first paper. Towards the development of more 

robust and reliable strategies, I aim to: 

 Consistently discriminate the breast cancer intrinsic subtypes and improve class 

prediction in the METABRIC data set, using an iterative approach. 

 

Chapter 6 – Meta-features for Predicting Breast Cancer Intrinsic Subtypes 

This chapter is board at Genomics, Proteomics & Bioinformatics
4
. It contains a novel systematic 

approach based on mathematical modelling, feature selection and data mining that considers 

pairwise probes, meta-features, to explore new ‘constructs’ for distinguishing breast cancer 

subtypes. With this novel approach, I aim to: 

 Identify meta-features at a minimum template able to predict and explain the breast 

cancer intrinsic subtypes. 

Chapter 7 – Basal-Like Breast Cancer Subtype 

This chapter is also published as an article at BMC Medical Genomics
5
. It contains integrative 

data from basal-like breast cancers, including the gene expression, miRNA profiles, copy 

number aberrations and survival outcomes. These data are used to understand the subtype 

contradictory behaviour and limited therapy response, with the aim to:  

 Identify survival markers that are able to stratify basal-like breast cancers with distinct 

molecular profiles, clinical features and disease outcomes.   

By centring attention on public databases, I investigate the connection of biomarkers and drug-

targets in breast cancer disease (in 7.7 Supporting Information), with the aim to: 

 Provide putative drug targets that may help to select drug combinations to inform 

future lab experiments. 

                                                      
3
 Milioli, H.H.; Vimieiro, R.; Tishchenko, I.; Riveros, C.; Berretta, R.; Moscato, P. (2016). Iteratively 

refining breast cancer intrinsic subtypes in the METABRIC dataset. BioData Mining; 9:2. 
4
Milioli, H.H.; Riveros, C.; Vimieiro, R.; Tishchenko, I.; Berretta, R.; Moscato, P. Meta-features 

modelling gene expression imbalances: an innovative strategy for breast cancer subtype 

prediction. Manuscript submitted to Genomics, Proteomics & Bioinformatics. 
5

Milioli, H.H.*; Tishchenko, I.*; Riveros, C.; Berretta, R.; Moscato, P. Basal-like breast cancer: 

molecular profiles, clinical features and survival outcomes. BMC Med Genomics; 10(1):19 *co-

authorship. 



Bioinformatics in Breast Cancer Chapter 1 

 

10 

 

Chapter 8 – Concluding Remarks 

In the last chapter, I summarise the conclusions of all previous chapters based on the research 

questions defined in Chapter 1. Furthermore, I point out the future directions of the breast 

cancer investigations, in the context of the present study. Briefly, researchers should look into 

different subtypes, focusing on molecular cause and effect, for novel tailored intervention 

strategies and clinical applications. 
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CHAPTER 2 

 

2. BREAST CANCER: CURRENT STATUS 

AND PERSPECTIVES 

 

The purpose of Chapter 2 is to contextualise breast cancer from origin to classification, as 

defined in 2.1 Breast Carcinogenesis and 2.2 The Breast Tumour Classification, 

respectively. The molecular characterisation of subtypes is introduced in 2.3 Intrinsic Subtypes 

and further detailed in the subsections devoted to each of the five main groups: luminal A, 

luminal B, HER2-enriched, basal-like and normal-like. The most recent classification of breast 

tumours, containing a unique interpretation of the genome and transcriptome profiles, is 

described in 2.4 Novel Integrative Clusters. The following section, 2.5 Predicting Molecular 

Subtypes, discuss important concepts that are inherent to prediction models for differentiating 

breast cancer intrinsic subtypes. A review of current methods and applications is also included 

in the thesis to highlight the progress of translational research, from fundamental science to 

applied medicine. The literature presented to substantiate Chapter 2 is listed in 2.6 References.     

 

 

 

 



Bioinformatics in Breast Cancer Chapter 2 

 

17 

 

2.1 Breast Carcinogenesis 

 

Understanding the human breast gland development is a prerequisite for capturing the critical 

steps involved in breast tissue morphogenesis – the distinct cell types – and breast cancer origin 

(Bertos & Park, 2011). The breast gland is a specific type of apocrine gland that evolves as an 

appendage from the epidermis. The mammary gland development occurs through distinctive 

main stages throughout embryonic, pubertal and adult life. At each stage, different signals are 

required to induce changes in both the epithelium and the surrounding mesenchyme/stroma. 

Hormones and growth factors, for instance, play a central role in different stages of gland 

development and are also involved in breast carcinogenesis. The control of the gland 

morphogenesis, nonetheless, remains one of the most challenging issues in developmental 

biology (Watson & Khaled, 2008). 

During embryogenesis, the gland development is dependent on heterotypic interactions 

that conduct the epithelial cells to proliferate and invade the underlying stroma, originating a 

branch of rudimentary epithelial ducts (Sternlicht et al., 2006). The residual structures enter in a 

quiescent allometric phase that lasts until puberty; a process essentially identical in human 

males and females (Russo & Russo, 2004). At puberty, the branching morphogenesis occurs in 

females by reason of systematic released hormones, oestrogen and progesterone. The 

development and differentiation of epithelial structures – in terminal ducts and lobules – occurs 

concomitant with the surrounding expansion of mesenchymal cells, including adipocytes, 

fibroblasts, blood vessels and immune cells. In adults, the breast gland is under continuous 

remodelling, through constant cell turnover, during each menstrual period, substantiated by cell 

proliferation, differentiation and apoptosis. The cycle remains until the ovary function declines 

at menopause stage (Lanigan et al., 2007). During pregnancy, in particular, an increased 

production of ovarian hormones results in further expansion of epithelial compartment that 

develops the functional lactating breast (Russo & Russo, 2004). 

The mammary gland is composed by a variety of stem cells that are essential for the 

organ development and tissue homeostasis. These stem cells originate the mature epithelium – 

luminal and basal – of essentially luminal or myoepithelial lineage, or via a series of lineage-

restricted intermediates. The luminal lineage can be further subdivided into ductal and alveolar 

cells that form the ducts and the alveolar units, respectively. Myoepithelial cells, in contrast, are 

specialised contractile cells located at the basal surface of the epithelium adjacent to the 

basement membrane (Visvader, 2009). The non-epithelial or stromal elements in the mammary 
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gland are: fibroblasts, endothelial cells, macrophages, and adipocytes; collectively the 

mammary fat pad, modulating tissue specificity of the normal breast as well as the growth, 

survival, polarity, and invasive behaviour of breast cancer cells (Polyak & Kalluri, 2010). 

The existence of a continuum of stem cells active at different points in mammary 

development had been identified by the various histological, immunochemical and molecular 

approaches (Sims et al., 2007). Importantly, the self-renewal allows the hierarchy of progenitors 

and their inter-relationship to be determined in main stages of the gland transformation and 

breast carcinogenesis. In spite of the obvious disparity between the highly regulated process of 

development and the less organised environment of invasive cancer, many identical mechanisms 

and signalling pathways regulate both activities. The surrounding stromal is strikingly similar in 

normal epithelial populations and in invasive tumour cells. Accordingly, the environment 

interactions are important in the two conditions, and also implicate in the cellular aetiology 

underpinning breast cancer heterogeneity (Lanigan et al., 2007; Visvader, 2009). 

The initiation of breast cancers is due to genetic and epigenetic transforming events that 

occur in a single cell (Polyak, 2007). Stem cells are slow-dividing, long-lived cells that by 

nature are exposed to damage and accumulate mutations over the years (Dontu et al., 2003). As 

a result, a cancer starts, normally, with mutations in a stem cell or in their lineage-restricted 

progeny (transit amplifying cells or committed differentiated cells) leading to a multistep 

evolution that contribute to cancer progress (Stingl & Caldas, 2007). The natural history of 

breast cancer involves the expansion of transformed cells through hyperproliferative stages, and 

subsequent in situ and invasive carcinomas, and finally to metastatic disease (Petersen & 

Polyak, 2010). The linear path of succession nevertheless oversimplifies the reality of breast 

cancer (Hanahan & Weinberg, 2000). 

In principle, the development proceeds via a process formally analogous to Darwinian 

evolution, in which genetic changes confer one or another type of adaptive advantage. Intrinsic 

factors and/or random mutations act in the primary tumour, therefore, selecting multiple cells 

according to acquired abilities in a particular microenvironment (Hanahan & Weinberg, 2000). 

The current course of breast tumour progression, in fact, presents complex variables involving 

new clones and high heterogeneity. Genomes of tumours often become unstable and new 

transformations increase at significant rates in each generation. Furthermore, the cell plasticity 

continually changes at random, exceeding the ability of Darwin selection to eliminate clones 

genetically less suitable. Consequently, the breast tumour mass contains a large number of 

distinct sectors or populations with distinct subclones. The clonal cells may, yet, evolve from 
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primary directly to metastatic stages – depending on the mutation site –, without passing 

through intermediate conditions (Polyak, 2011). 

 In the context of a malignant cell transformation, Hanahan and Weinberg (2000) 

suggested a set of manifestations that collectively dictate tumour growth: sustaining 

proliferative signalling, evading growth-inhibitory signals, resisting programmed cell death 

(apoptosis), enabling replicative immortality, inducing angiogenesis and activating invasion and 

metastasis. Underlying these hallmarks are the genome instability, which generates the genetic 

diversity, and inflammation, which fosters multiple hallmark functions. In the last decade, two 

emerging hallmarks have been added to the list: reprogramming of energy metabolism and 

evading immune destruction (Hanahan & Weinberg, 2011). Most likely these potential 

mechanisms concomitantly occur in different cancers, and their relative contribution varies 

according to tumour type and progression stage (Polyak, 2007). 

 Finally, the breast cancer is a result of direct and indirect molecular perturbations that 

may provoke expression changes of greater amplitude in downstream genes or entire pathways. 

The dramatic changes in gene expression patterns of the tumour-associated luminal, 

myoepithelial and stromal cells determine the differences in mammary carcinogenesis. Notably, 

there exist enough evidences suggesting that deregulation in pathways and cancer initiation 

versus promotion are events clearly divergent, complex and heterogeneous, which difficult the 

disease biological understanding and the breast cancer classification (Petersen & Polyak, 2010; 

Polyak, 2011). 

 

 

2.2 The Breast Tumour Classification 

 

The breast cancer classification is defined by virtual categories according to different criteria 

and serving a different purpose (Eusebi, 2010). The major categories currently involves the 

assessment of histological aspects – incorporating morphology-based (Ellis et al., 1992) and 

histological grade (Elston-Ellis modification of Scarff-Bloom-Richardson grading system) –, 

and staging pathological parameters: tumour size (T), axillary lymph-node involvement (N), and 

the presence or absence of distant metastases (M) (Brierley et al., 2016). Additionally, 

immunohistochemical (IHC) markers such as the hormone receptors oestrogen (ER) and 

progesterone (PR), and the overexpression and/or amplification of the human epidermal growth 
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factor receptor 2 (ERBB2, also termed HER2 or HER2/neu), provide a therapeutic predictive 

value (Harris et al., 2007). Classifying the features is crucial not only to select the most effective 

treatment for each tumour type, but also to delineate patient prognosis (Dawson et al., 2013). 

According to the histology, the vast majority of breast carcinomas (50-80%) are derived 

from the epithelium lining of the ducts, designated as invasive ductal carcinomas (IDC) not 

otherwise specified (NOS), also named IDC of no special type (NST). The second most 

common type is the invasive lobular carcinoma (ILC) which comprises of 5%-15% of all cases. 

Furthermore, other variants of invasive breast carcinomas, recognised as “histological special 

types”, accounted together up to 25% of all breast cancers (e.g. tubular, cribriforme, mucinous, 

papillary, apocrine, neuroendocrine, medullary, secretory, adenoid cystic carcinoma, acinic, 

metaplastic) (Weigelt; Geyer; et al., 2010).  

Grade is an assessment of the degree of differentiation (i.e. tubule formation and 

nuclear pleomorphism) and proliferative activity (i.e. mitotic index) of a tumour, and reproduces 

its aggressiveness. The tumour grade was determined by the Scarf-Bloom-Richardson Grading 

system and modified by Elston and Ellis (1991). For instance, cells are distinguished as well 

differentiated (low grade), moderately differentiated (intermediate grade), and poorly 

differentiated (high grade), as they progressively lose the features seen in normal breast cells. 

The rarity of many of these neoplasms linked with the lack of standardised criteria for their 

diagnosis and the low inter-observer reproducibility, however, limit randomised studies to 

define optimal treatments (Nagao et al., 2012; Yerushalmi et al., 2009). 

Furthermore, the classification of malignant tumours, including malignant lesions of the 

breast, using the TNM system evaluates priority classification by anatomic extent; where T 

refers to the extent of the primary tumour (Table 2.1), N the absence or presence of regional 

lymph-node metastasis in the armpits, neck, and inside the chest (Table 2.2), and M the absence 

or presence of metastasis spread to a more distant part of the body (e.g. brain, lung, liver, bone) 

(Table 2.3). Once the T, N, and M are determined, a stage of 0, I, II, III, or IV is assigned, with 

stage 0 being in situ, stage I being early stage invasive cancer, and stage IV being the most 

advanced (Table 2.4). Finally, the staging remains an important feature to evaluate prognosis 

and recurrence, besides treatment decision (Brierley et al., 2016; Edge & Carlson, 2011). 
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Table 2.1 Primary Tumour (T) 

TX Primary tumour cannot be assessed. 

T0 No evidence of primary tumour. 

Tis Carcinoma in situ. 

 DCIS – Ductal carcinoma in situ; 

 LCIS – Lobular carcinoma in situ 

  Paget disease of the nipple NOT associated with invasive carcinoma and/or carcinoma in 

situ (DCIS and/or LCIS) in the underlying breast parenchyma. Carcinomas in the breast 

parenchyma associated with Paget disease are categorised based on the size and characteristics of 

the parenchymal disease, although the presence of Paget disease should still be noted. 

T1 Tumour ≤20 mm in greatest dimension. 

 T1mi – Tumour ≤1 mm in greatest dimension. 

 T1a – Tumour >1 mm but ≤5 mm in greatest dimension. 

 T1b – Tumour >5 mm but ≤10 mm in greatest dimension. 

 T1c – Tumour >10 mm but ≤20 mm in greatest dimension. 

T2 Tumour >20 mm but ≤50 mm in greatest dimension. 

T3 Tumour >50 mm in greatest dimension. 

T4 Tumour of any size with direct extension to the chest wall and/or to the skin (ulceration or 

skin nodules)
a
 

 T4a – Extension to the chest wall, not including only pectoralis muscle adherence/invasion. 

 T4b – Ulceration and/or ipsilateral satellite nodules and/or oedema (including peau d'orange) of 

the skin, which do not meet the criteria for inflammatory carcinoma. 

 T4c – Both T4a and T4b. 

 T4d – Inflammatory carcinoma. 

Note: 
a 
Invasion of the dermis alone does not qualify as T4.

 

Data obtained from AJCC: Breast. In: Edge SB, Byrd DR, Compton CC, et al., eds.: AJCC Cancer 

Staging Manual. 7th ed. New York, NY: Springer, 2010, pp 347-76. 
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Table 2.2 Regional Lymph Nodes (N) 

NX Regional lymph nodes cannot be assessed (e.g., previously removed). 

N0 No regional lymph node metastases. 

N1 Metastases to movable ipsilateral level I, II axillary lymph node(s). 

N2 Metastases in ipsilateral level I, II axillary lymph nodes, clinically fixed or matted. OR 

Metastases in clinically detected
b
 ipsilateral internal mammary nodes in the absence of 

clinically evident axillary lymph node metastases. 

 N2a – Metastases in ipsilateral level I, II axillary lymph nodes fixed to one another (matted) or 

to other structures. 

 N2b – Metastases only in clinically detected
b
 ipsilateral internal mammary nodes and in 

the absence of clinically evident level I, II axillary lymph node metastases. 

N3 

 

 

Metastases in ipsilateral infraclavicular (level III axillary) lymph node(s) with or without 

level I, II axillary lymph node involvement. OR 

Metastases in clinically detected
a
 ipsilateral internal mammary lymph node(s) with 

clinically evident level I, II axillary lymph node metastases. OR 

Metastases in ipsilateral supraclavicular lymph node(s) with or without axillary or internal 

mammary lymph node involvement. 

 N3a – Metastases in ipsilateral infraclavicular lymph node(s). 

 N3b – Metastases in ipsilateral internal mammary lymph node(s) and axillary lymph node(s). 

 N3c – Metastases in ipsilateral supraclavicular lymph node(s). 

Note: 
a
 Clinically detected is defined by imaging studies (excluding lymphoscintigraphy) or by clinical 

examination and having characteristics highly suspicious for malignancy or a presumed pathologic 

macrometastasis based on fine needle aspiration biopsy with cytologic examination.  

Data obtained from AJCC: Breast. In: Edge SB, Byrd DR, Compton CC, et al., eds.: AJCC Cancer 

Staging Manual. 7th ed. New York, NY: Springer, 2010, pp 347-76. 
 

 

 

 

Table 2.3 Distant Metastasis (M) 

M0 No clinical or radiographic evidence of distant metastases. 

cM0(i+) No clinical or radiographic evidence of distant metastases, but deposits of molecularly 

or microscopically detected tumour cells in circulating blood, bone marrow, or other 

non-regional nodal tissue that are ≤0.2 mm in a patient without symptoms or signs of 

metastases. 

M1 Distant detectable metastases as determined by classic clinical and radiographic 

means and/or histologically proven >0.2 mm. 

Data obtained from AJCC: Breast. In: Edge SB, Byrd DR, Compton CC, et al., eds.: AJCC Cancer 

Staging Manual. 7th ed. New York, NY: Springer, 2010, pp 347-76. 
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Table 2.4 Anatomic stage/prognostic groups 

Stage 0 Tis N0 M0 

Stage IA 

Stage IB 

 

T1* 

T0 

T1* 

N0 

N1mi 

N1mi 

M0 

M0 

M0 

Stage IIA 

 

 

Stage IIB 

 

T0 

T1* 

T2 

T2 

T3 

N1** 

N1** 

N0 

N1 

N0 

M0 

M0 

M0 

M0 

M0 

Stage IIIA 

 

 

 

 

Stage IIIB 

 

 

Stage IIIC 

T0 

T1* 

T2 

T3 

T3 

T4 

T4 

T4 

Any T 

N2 

N2 

N2 

N1 

N2 

N0 

N1 

N2 

N3 

M0 

M0 

M0 

M0 

M0 

M0 

M0 

M0 

M0 

Stage IV Any T Any N M1 

Note: *T1 includes T1mi. ** T0 and T1 tumours with nodal 

micrometastases only are excluded from Stage IIA and are 

classified Stage IB.  

Data obtained from AJCC: Breast. In: Edge SB, Byrd DR, 

Compton CC, et al., eds.: AJCC Cancer Staging Manual. 7
th
 

ed. New York, NY: Springer, 2010, pp 347-76. 

 

 

Combined with histopathological assessment and TNM classification, the standard 

evaluation of breast cancer also includes the IHC characterisation of ER, PR and HER2 status. 

The hormone oestrogen and progesterone are important regulators of cell proliferation and 

differentiation and are crucial to guide endocrine-based therapies. Hormone receptor-positive 

breast cancers account for 75-80% of all cases; around 65% express both ER and PR, 10% are 
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ER-positive and PR-negative, 5% are ER-negative and PR-positive. Furthermore, HER2 

represents an additional predictive marker in routine use. Approximately 10-15% of breast 

cancers present HER2 over-expression and/or amplification (Dawson et al., 2013). In this case, 

patients are candidates to receive target therapies with the humanised monoclonal antibody 

trastuzumab (Herceptin®), or other HER2-targeted therapy. Despite the value of ER and PR, 

their ability to direct the most appropriate systemic therapy remains defective; likewise, only 

part of the HER2-positive patients respond to treatment (Viale, 2012). 

The first major breakthrough in applied investigation of breast cancers occurred with 

the innovative molecular methodologies of gene expression arrays (Portier et al., 2012). At the 

molecular level, histological features appear more homogenous, which allow further 

stratification of tumours according to intrinsic characteristics (Rakha et al., 2010). By using 

multidimensional variation and a hierarchical clustering analysis of gene expression profiling, 

Perou et al. (2000) and Sørlie et al (2001) provided early insights into the molecular 

heterogeneity of the disease. Five distinct subtypes were identified based on the gene expression 

information: luminal A, luminal B, HER2-enriched, basal-like and normal-like breast tissue. 

Accordingly, differences in gene expression – reflecting basic alterations in the tumour cell 

biology – were associated with significant variation in clinical (Hu et al., 2006; Sørlie et al., 

2003). In 2011, at 12th St. Gallen International Breast Cancer Conference, for the first time 

experts have suggested the use of intrinsic biological subtypes for therapeutic decisions over 

early breast cancers, and for dealing with the diversity of tumours (Harbeck et al., 2013). 

 

 

2.3 Intrinsic Subtypes  

 

Molecular profiling has fundamentally changed our understanding of breast cancer since the 

initial landmark study by Perou et al (2000) and Sørlie et al. (2001), when a new taxonomy of 

breast cancers was proposed, based on the expression patterns of the so-called ‘intrinsic genes’. 

Intrinsic genes were defined as genes with a great variation in expression levels among different 

tumours (Strehl et al., 2011). In this context, the classification of the five intrinsic subtypes is 

mainly driven by the expression of oestrogen receptor (ER) and ER-related genes, separating 

ER-positive (luminal A and luminal B) from the ER-negative tumours (HER2-enriched and 

basal-like). Furthermore, this classification is extended to the high proliferation of HER2 and 
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related genes, mapping to the region of the HER2 amplicon on chromosome 17, amongst other 

clinical markers (Ki67) (Reis-Filho & Pusztai, 2011).  

 

 

2.3.1 Luminal A and B 

Cancers of luminal-type are characterised by the expression of genes similar to that 

observed in normal breast luminal epithelial cells. In addition, this type typically express 

luminal cytokeratins 8 (KRT8) and 18  (KRT18) (Strehl et al., 2011). At the molecular level, 

however, luminal A and B are considered as two different subtypes with independent intrinsic 

features and distinct clinical behaviour (Ciriello et al., 2013; Sørlie et al., 2003). The major 

differences between luminal A and luminal B are marked by the levels of proliferation (MKI67 

and BIRC5) and cell cycle-associated (CCNB1 and MYBL2) genes, which are more pronounced 

in luminal B breast cancers (M. C. Cheang et al., 2009; Creighton, 2012; Wirapati et al., 2008). 

In clinical practice, the distinction of A and B subtypes is of high interest; luminal A breast 

carcinomas are typically at a lower risk for relapse, whereas luminal B generally carries a worse 

prognosis (Strehl et al., 2011) and higher recurrence scores (Fernández et al., 2015; Inic et al., 

2014). 

Luminal A composes about 40% of all breast cancers and exhibits the best prognosis of 

all breast cancer subtypes (Perou et al., 2000; Sørlie et al., 2001; Sotiriou & Pusztai, 2009).  

Usually have high expression of ER-related genes, low expression of the HER2 cluster of genes, 

and low expression of proliferation genes (Hu et al., 2006). Studies performed with luminal A 

tumours confirmed markedly gene-expression deregulation of LIV1, HNF3A or FOXA1, XBP1, 

GATA3 (Sørlie, 2004; Sørlie et al., 2001), ESR1, TFF3 (Weigelt; Baehner; et al., 2010). 

Integrated analysis of gene expression microarrays and copy number variation (CNVs) and 

aberration (CNAs) have revealed further complexity and diversity within the breast cancer 

subtypes (Ciriello et al., 2013). The DNA copy number profile of Luminal A is correlated with 

low-grade tumours, frequently displaying 1q gain and 16q loss. 

 Luminal B, less common, accounts for 20% and have relatively lower expression of 

ER-related genes, variable expression of the HER2, and higher expression of proliferation 

genes. In comparison to luminal A, type B tumours show worse breast cancer prognosis and 

have high recurrence scores (Strehl et al., 2011). Luminal B was further distinguished from 

luminal A by the high expression of a particular set of genes such as GGH, NSEP1, CCNE1 

(Sorlie, 2004; Sotiriou & Pusztai, 2009), SQLE (Weigelt; Baehner; et al., 2010), FGFR1 and 

ZIC3 (Reis-Filho & Pusztai, 2011). Furthermore, the copy number analysis of Luminal B 
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tumours revealed a more complex genomic profile with amplifications in 8p11, 8q21, 11q13, 

17q12 (HER2 locus) and 20q13, associated with a poor outcome (Bergamaschi et al., 2006; 

Chin et al., 2006; Cornen et al., 2014). Additionally, losses have been reported in Luminal B 

tumours in comparison to other breast cancer subtypes: 6q14, 9p21, 18p11 (Cornen et al., 2014). 

These changes may play a role in the tumour development and hormonal therapy resistance. 

 

 

2.3.2 HER2-enriched 

The HER2-enriched subtype, about 10% of all breast cancers, is defined by the 

overexpression of HER2/ERBB2 and proliferation markers, and low expression of luminal 

genes. Hence, these tumours are typically negative for the hormone receptors ER and PR. 

Notably, HER2-enriched subtype is characterised by high expression of several genes in the 

HER2 amplicon at 17q22.24 including HER2 (ERBB2), GRB7, TRAP100 (Reis-Filho & Pusztai, 

2011; Sorlie, 2004). However, not all breast cancers defined as HER2-positive (20 to 30%) are 

classified as HER2-enriched by the molecular profiling. HER2-enriched subtype comprises only 

about half of clinically HER2-positive breast cancer; the other part express both the HER2 and 

luminal gene clusters, and fall in a luminal subtype. The HER2-enriched subtype has been 

affected by a prognostic disadvantage, not responding to traditional chemotherapy and also 

presenting a significant resistance to treatment with HER2 target therapy (Sotiriou & Pusztai, 

2009; Strehl et al., 2011). Patients diagnosed within this subtype have also relatively high rates 

of metastasis to brain, liver, bone, and lung sites (Kennecke et al., 2010). 

 

 

2.3.3 Basal-like 

The basal-like subtype accounts for approximately 15% of invasive breast cancers. 

Notably, there is an association between the basal-like subtype and patient race and age. 

Population-based studies revealed the subtype prevalence in young (< 50) African-American 

women (Parker et al., 2009; Strehl et al., 2011). This group is characterised by the expression of 

cytokeratins (KRT5/6, KRT14 and KRT17), typically found in the basal cells of normal 

mammary gland epithelium, and high expression of proliferation genes (Badve et al., 2011; M. 

C. U. Cheang et al., 2008). Tumours also exhibit altered expression of ANXA8, CX3CL1, 

TRIM29 (Sorlie, 2004) FABP7, LAMC2, ID4 (Weigelt; Baehner; et al., 2010), FGFR2, 

CDKN2A and RB1 (Reis-Filho & Pusztai, 2011). Most of the basal-like samples are ER-, PR -, 

and HER2-negative; so called triple-negative. Although the terminologies are used 
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interchangeably, basal-like tumours are considered more homogeneous than triple-negatives 

breast cancers (Bertucci et al., 2012; Cleator et al., 2007). 

Furthermore, BRCA1 mutation-associated breast carcinomas strongly resemble basal-

like tumours and might be regarded as a special subgroup within this intrinsic subtype. It has 

also been reported that triple negative and basal-like tumours have the highest frequency of 

copy number alterations, gains and losses, in comparison to other breast cancer subtypes 

(Engebraaten et al., 2013; Weigman et al., 2012). According to the copy number landscape, 

several features were observed in basal-like tumours including widespread genomic instability 

and common gains of 1q, 3q, 8q and 12p, and loss of 4q, 5q and 8p (TCGA, 2012). 

Overall, patients diagnosed with basal-like tumours have a poor prognosis with worse 

outcome and decreased overall survival (Banerjee et al., 2006). Patients, however, have a 

relatively divergent disease outcome and varying overall survival (Carey et al., 2010; Rakha et 

al., 2008). Many individuals have shown high mortality and recurrence rates in the first 3-5 

years, and others survivability of over 10 years following the diagnosis. In the last case, the 

prognosis is better than those of luminal breast cancer subtype (M. C. U. Cheang et al., 2008; 

Mulligan et al., 2008). Thus, the unpredictable behaviour and the refractory nature of these 

tumours have an impact on clinical assessments (Kreike et al., 2007; Rakha et al., 2008); with 

tumours less responsive to chemotherapy, and more sensitive to neoadjuvant chemotherapy 

(Banerjee et al., 2006).  

Recent studies on triple-negative breast cancers (Burstein et al., 2015; Jézéquel et al., 

2015; Lehmann et al., 2011) pointed to the existence of intrinsic basal-like subtypes. The 

classification proposed by Lehmann et al. (2011) revealed molecular groups of triple-negative 

tumours, including Basal-like 1 (BL1), Basal-like 2 (BL2) and Immunomodulatory (IM), 

overlapping basal-like samples. Alternatively, Burstein and colleagues (2015) defined the 

Basal-Like Immune-Suppressed (BLIS) and Basal-Like Immune-Activated (BLIA) subtypes. 

More recently, Jézéquel et al. (2015) pointed to two other groups: a basal-like with low immune 

response and high M2-like macrophages, and basal-enriched with high immune response and 

low M2-like macrophages. All studies, however, focused on investigating the molecular 

heterogeneity of triple-negative breast cancers; partially supporting each other. In fact, the 

classification of triple-negatives is not ideal for defining basal-like entities, and further analyses 

are required in the field. 
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2.3.4 Normal-like 

Normal-like is typified by similar gene expression pattern as normal breast cells, and 

remains an enigmatic subtype. A normal breast tissue shows the highest expression of many 

genes, such as PIK3R1 and AKR1C1, known to be characteristic of adipose tissues and other 

non-epithelial cell types (Calza et al., 2006). Overall, normal breast-like tumours are part of the 

ER-negative branch; but also part of the ER-positive in other studies. It is therefore unclear 

whether these tumours represent poorly sampled tumour tissue – contaminated with surrounding 

normal breast tissue – or a distinct important group. This subtype remains a significant issue to 

be solved in both research and clinical approach (Strehl et al., 2011). 

 

 

2.3.5 Other groups 

Following the initial identification of the intrinsic molecular subtypes, gene expression 

studies have evolved and further sub-classification of breast cancers into new molecular entities 

have been proposed. Herschkowitz et al. (2007) and Prat et al. (2010) have identified a new 

breast cancer intrinsic subtype known as Claudin-low. The newly described subtype comprises 

of non-basal triple-negative breast cancers, characterised by low to absent expression of genes 

involved in tight junctions and cell-cell adhesion (claudin 3, 4 and 7, E-cadherin), differentiated 

luminal cell surface markers (EpCAM and MUC1) and enrichment for epithelial-to-

mesenchymal transition markers and immune response involving CD44 and CD24, ALDH1A1, 

IL6, CXCL2, CDH1 (Herschkowitz et al., 2007; Prat & Perou, 2011; Reis-Filho & Pusztai, 

2011). Noteworthy, claudin-low subset lack classical basal-like markers such as cytokeratins 5 

and 6 (KRT5 and KRT6) and epidermal growth factor receptor (EGFR) (Strehl et al., 2011). 

Clinically, the majority of Claudin-low tumours have a poor prognosis with a high frequency of 

metaplastic and medullary differentiation (Prat & Perou, 2011).  

 Molecular apocrine, another distinct molecular subgroup of breast tumours, is marked 

by ER-negative and AR-positive. HER2 amplification is commoner in the molecular apocrine 

than the other groups. The apocrine tumours express AR, HMGCR, GHR, PRLR and EGFR 

(Farmer et al., 2005), FAS, XBP1, ERBB2 (Weigelt; Baehner; et al., 2010). In the molecular 

classification setting, the variety on the gene expression information in the molecular apocrine 

subtype difficult its integration with previous microarray schemes for breast cancer subtyping 

(Farmer et al., 2005). In sum, the classifications herein mentioned have all some merits and 

several limitations. The taxonomy of breast cancers is, therefore, an open field to be explored 

with the purpose of understanding the mechanisms driving the disease course (Viale, 2012). 
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2.4 Novel Integrative Clusters 

 

Through intricate analysis, METABRIC has proposed novel breast cancer subtypes with unique 

interpretations of the genome and transcriptome profile. The molecular profiling was defined 

across tumors of nearly two thousand women, for whom histopathological and clinical 

information had been meticulously recorded. This cohort performed an integrative clustering 

framework (iCluster), described by Shen et al. (2009), to identify not only gene expression 

patterns, but distinct loci that contribute to the disease phenotype. In this respect, cis-acting 

genes that exhibited significant associations with CNAs across the entire cohort of tumours 

influenced variation among groups. Finally, the new patterns and ‘clusters’ (IntClust 1 to 

IntClust 10) in the data led to the early conclusion that  ‘breast cancer’ is in fact at least ten 

different diseases; each containing its own molecular fingerprint (Curtis et al., 2012). Despite 

this new interpretation, breast cancer disease remains poorly understood, molecularly 

inconsistent classified and beyond pronounced improvements the clinical practice. 

Tumours within each cluster were compared across several attributes, such as 

clinicopathological features and survival outcomes. Tumours were yet stratified according to 

grade, tumour size, number of lymph nodes, age at diagnosis, and integrative cluster 

membership. As a result, molecular characteristics were observed for each of the 10 clusters in 

both data sets discovery and validation, demonstrating subtype reproducibility (Curtis et al., 

2012). These findings have potential implications for the individualisation of treatment 

approaches, providing insights for a personalised breast cancer management (Dawson et al., 

2013). The complete classification, nonetheless, should integrate information beyond the 

genomic landscape and transcriptomic approach. In this context, information of abnormalities in 

DNA methylation, microRNA expression and proteins offer other opportunities to further 

characterise the molecular architecture of breast cancer (TCGA, 2012). The cellular and 

molecular heterogeneity of breast tumours and the large number of plays potentially involved in 

controlling cell growth, death, and differentiation emphasise the importance of studying 

multiple alterations in concert (Sørlie et al., 2001).  
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2.5 Predicting Molecular Subtypes 

 

Microarray technologies and gene expression profiling have been widely explored in breast 

cancer research. In the direction of developing useful tools to delineate the disease behaviour, a 

number of prognostic signatures have been proposed, such as Mammaprint® (Agendia, 

Huntington Beach, CA USA), Oncotype DX® (Genome Health Inc, Redwood City, CA USA), 

Veridex 76-gene LLC (Johnson & Johnson Company, San Diego, CA USA), MapQuant Dx 

(IPSOGEN SA, Marseilles, FR and New Haven, CT USA) and Breast Cancer Index 

(bioTheranostics Inc, San Diego, CA USA). Despite differences in the genes that integrate each 

of the signatures, the coverage of proliferation-related genes has led to the identification of 

similar groups of patients having poor prognosis. Due to the genes association to proliferative 

state, most of the signatures show great prognostic value for ER-positive patients; however, 

have limited capacity to delineate ER-negative tumours. Overall signatures have shown virtual 

prognostic information with potential to uncover other tumour features that are beyond what is 

offered by semi-quantitative assessment of ER, PR, HER2, and Ki67.  

New concepts involving prediction models incorporate intrinsic molecular features 

shared among tumours with analogous behaviour. These features have been used to classify 

breast cancers into the five main subtypes: luminal A, luminal B, HER2-enriched, normal-like 

and basal-like (Herschkowitz et al., 2007; Hu et al., 2006; Perou et al., 2000; Prat et al., 2010; 

Sørlie et al., 2001; Sørlie et al., 2003). Parker et al. (2009) proposed a Single Sample Predictor 

(SSP) method to classify tumour subtypes according to the correlation with Nearest Shrunken 

Centroids (NSC) (Tibshirani et al., 2002). The so-called PAM50 method uses a 50 gene set as 

centroids.  These genes are mainly involved in cell proliferation and are highly correlated with 

breast cancer subtypes. In the same direction, Haibe-Kains et al. (2012) attempted to simplify 

the subtypes prediction by using a Subtype Classification Model (SCM) based on three key 

genes: estrogen receptor 1 (ESR1), erb-b2 receptor tyrosine kinase 2 (ERBB2), and aurora 

kinase A (AURKA). Overall, the main goal of the disease subtyping is to define sets of patients 

at risk more likely to respond to selective drugs in a group-based tailored therapy. 

Predictor models in breast cancer research have brought new insights to translational 

science and applied medicine, and are of unquestionable value to clinical practice. There is an 

agreement in the outcome predictions for ER-positive patients, even though different – in size 

and shape – gene sets are used for breast cancer prognostication (Fan et al., 2006). The 

independent sets result from the diversity in high-dimensional data sets and feature selection 
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approaches that frequently lead to the identification of distinct features (Ein-Dor et al., 2005). In 

addition, limiting the number of features may impact the classifiers performance, whereas 

selecting a high number may result in overfitting decision rules. Other important issues may 

arise with random sample collection, gene expression analysis and microarray technology. 

Hence, a range of different gene lists are selected (Popovici et al., 2010). The weaknesses of 

these methods lie in the analysis of multiple data sources and serial approaches. 

Subtyping prediction methods, on the other hand, showed only a moderate agreement 

between sample labelling across distinct studies (Weigelt; Mackay; et al., 2010), intrinsic errors 

(Ebbert et al., 2011), wide confidence intervals (Michiels et al., 2005) and independent 

predictive value (Prat et al., 2012).  Lusa et al. (2007) yet reported the limitations of using SSPs 

models across data sets due to the fact that the centroids values should be in the same scale of 

external cohorts. It is noteworthy to mention that sample size, in this case, causes a profound 

impact on the labels assignment, induced by sample stratification. On the other hand, the 

molecular subtypes of breast cancer are not completely understood and need additional research 

(Wirapati et al., 2008). For instance, it has been observed that proliferation in luminal samples 

forms a continuum and any division into luminal A and B is somewhat arbitrary (Pfeffer, 2013). 

Basal-like samples were also further divided into subsets of divergent molecular 

characterisation and clinical outcome (Bertucci et al., 2012; Lehmann et al., 2011).   

Stringent standardisation of data sets and methodologies are therefore required to 

improve breast cancer classification and subtype prediction. Alternatively, the development of 

novel bioinformatics approaches – independent of data composition – will contribute to the 

analysis of independent data sets and combined technologies (Paquet & Hallett, 2015). 

Innovative strategies are therefore mandatory towards the interpretation of more robust and 

complex data sets prior the translating fundamental medical research into clinical applications 

(Michiels et al., 2011). 
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CHAPTER 3 

 

3. MICROARRAY TECHNOLOGIES AND 

‘OMICS’ DATA SETS 

 

Chapter 3 contains an overview of gene expression microarrays which includes definitions and 

implications for breast cancer research. This topic is introduced in 3.1 Microarray 

technologies. In conducting research, the selection of state-of-the-art data sets from the public 

domain determines the quality of the analysis provided and, consequently, the later 

achievements. Section 3.2 The METABRIC Breast Cancer Data Set shows one of the most 

comprehensive data sets available in the field, containing over 2000 samples. The molecular 

profile and clinicopathological information that comes along with this data is also crucial in 

supporting the application of distinct bioinformatics approaches. For external validation across 

platforms (Illumina and Affymetrix), a second data set is assessed: ROCK. The most important 

details for this data set are discussed in 3.3 ROCK: Integrative Breast Cancer Data. It is 

noteworthy that the high quality of both data sets, compared to other available data sets, exposes 

the urgent need for developing and applying novel strategies to uncover breast cancer subtypes.  
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3.1 Microarray technologies 

 

Bioinformatics have developed following the technological improvements of large-scale 

microarray data (Yigitoglu et al., 2015). Despite the fact that microarray is relatively novel – the 

"gene chip" industry started to grow in the 1990's with exponential improvements in the 

methodology – there are thousands of publications relying on this approach. Microarrays have 

showed a profound impact on a range of studies and have significantly accelerated the rate of 

scientific discoveries (Ball et al., 2004). It is a valuable technology in the sense that arrays allow 

the investigation of thousands of small molecules simultaneously, at one time. In addition, the 

analysis of microarrays permits comparisons of expression levels between different cells or 

tissues, such as diseased and normal profiles or treated versus non-treated samples (Villasenor-

Park & Ortega-Loayza, 2013). 

The development of arrays was possible due to innovations in micro-engineering, 

molecular biology and bioinformatics (Heller, 2002). With this integration, the technology of 

DNA microarrays (cDNA microarrays, oligonucleotide microarrays and SNP microarrays) has 

become the most sophisticated and the most widely used in the last decades. In the same line, 

other types of microarrays have emerged, including the RNA, miRNA, Protein, Peptide, Tissue, 

Cellular, Antibody, Carbohydrate, etc. Besides the variety of target molecules, this standard 

methodology offers a comprehensive qualitative and quantitative assessment of probe arrays 

into microchips, created by robotic machines (van Bakel & Holstege, 2004).  

DNA or oligonucleotides microarrays (Figure 3.1) are an orderly arrangement of 

nucleotide sequences attached to a solid surface – usually made of glass or silicon – by a 

covalent bond to a chemical matrix via epoxy-silane, amino-silane, lysine and polyacrylamide. 

The fixed elements are used as probes – selected from GenBank, dbEST, and RefSeq – to 

hybridise a cDNA or cRNA from test samples, prepared under appropriate conditions (Nguyen 

et al., 2002). Firstly, mRNA molecules are selected from a target of investigation and a 

reference sample. Then, complementary molecules of the mRNA are produced and labelled with 

either a fluorescent dye (“fluorophore”) or a radioactive isotope. Binding fluorophores, 

commonly Cy3 (which fluoresces green) and Cy5 (which fluoresces red), for example, facilitate 

direct parallel comparison between different cell or tissue types. Finally, the labelled molecules 

are hybridised to the probes, during which process the targets competitively bind to the 

corresponding array probe (Villasenor-Park & Ortega-Loayza, 2013). 
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Figure 3.1 Conceptual view of a cRNA microarray processing. 

In the gene chip, individual probes are immobilised on the array surface and spotted along the 

probe cells. Each probe cell contains millions of copies of the same oligonucleotide, or probe. 

For the hybridisation procedure, the methodology is divided on four main steps. Step1 defines 

the mRNA extraction from control (non-tumour) and tumour tissue samples that are 

subsequently copied into fluorescent labelled cRNA fragments in Step 2. Step 3 is marked by 

the cRNA hybridisation over the array surface, in a competitive probe-target interaction. The 

array then undergoes a series of washing and staining phases. In Step 4, each probe cell is 

scanned by a laser to quantify the levels of hybridisation obtained with the intensity 

measurement at the probe location. The probe intensity is adjusted to overcome possible defects 

in the array and the data is normalised and processed using computer resources. 

 

 

Hybridisation is identified based on fluorescence detection of fluorophore-labelled to 

determine the relative abundance of nucleic acid sequences in the sample. A special scanner 

detected and recorded the fluorescent intensity for each spot/areas on the microarray slide. The 

level of expression is subsequently measured in a semi-quantitative manner by comparing the 

level of messenger RNA (mRNA) of thousands equivalent genes amongst the target and 
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reference sample (Strehl et al., 2011). If a particular gene is very active (overexpressed), it 

produces many molecules of mRNA, thus, more labelled complementary molecules, which 

hybridise to the probe on the microarray slide and generate a very bright fluorescent area. Genes 

that are somewhat “less active” (under-expressed) produce fewer mRNAs, which results in 

dimmer fluorescent spots. The average of signal from Cy3 and Cy5 are result of gene 

expression competition between distinct samples, which means that specific gene is more/less 

expressed in one sample than in other when the colour is green or red, and equally expressed 

when the signal emitted is yellow. Ultimately, if there is no fluorescence, none of the messenger 

molecules have hybridised, indicating that the gene is inactive in that sample (Villasenor-Park 

& Ortega-Loayza, 2013). 

Although microarrays are capable of generating a large amount of significant data, the 

data-intensive nature of microarray technology has created an unprecedented informatics and 

analytical challenge. Inappropriate selection of “normal” or control specimens and experimental 

samples may not yield relevant results. The type of data created also depends on several other 

variables such as diverse methods of generating labelled material, experimental design, data 

standardisation, image acquisition and analysis, normalisation, statistical significance inference, 

biological exploratory data analysis, class prediction and validation (Allison et al., 2006; Leung 

& Cavalieri, 2003).  

Determining consistency is complicated if all aspects are to be assessed in a non-

arbitrary way across the different platforms and their variants. In addition, reliability is a 

sensitive issue for each group that provide the technology: Illumina, Affymetrix, Agilent 

Technologies, NimbleGen Systems (van Bakel & Holstege, 2004). Verification of data 

generated from microarray experiments using quantitative RT-PCR (reverse-transcriptase 

Polymerase Chain Reaction), northern blot analysis, or RNase protection assays may also be 

important (Villasenor-Park & Ortega-Loayza, 2013). Apart from quality microarray issues, data 

interpretation is currently the main bottleneck in microarray analyses.  

In particular, the automated integration of complementary information in analysis 

algorithms is not yet well established. The main reasons for that are the lack of a common 

nomenclature and the difficulty of querying data in a single format. The Gene Ontology 

Consortium and similar initiatives have taken on the hard task of providing a cohesive 

connected framework. Although not intrinsic to microarray technology, these efforts are 

fundamental for the success of the technology (Hoheisel, 2006). Moreover, open-source 

initiatives such as Bioconductor (http://www.bioconductor.org), which are written in the R 

statistical programming language (http://www.r-project.org), provide a means for developing, 

http://www.bioconductor.org/
http://www.r-project.org/
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testing and disseminating new algorithms. To highlight, comprehensive expert systems that 

carry out data interpretation automatically are currently under development, likely to be 

available in the future (Reimers, 2010). 

Recently, a PAM50 assay based on the expression of 50 genes has been suggested to 

classify breast cancer samples into each of the five intrinsic subtypes (Nielsen et al., 2010; 

Parker et al., 2009). On the other hand, microarray data has also been used by several groups to 

identify distinct prognostic signatures of breast cancer (Paik et al., 2004; van't Veer et al., 2005; 

Van De Vijver et al., 2002). Two main signatures, for instance, have been approved for clinical 

use and are now being tested in randomised clinical trials (Cardoso et al., 2008; Sparano & Paik, 

2008). MammaPrint® (a microarray-based assay of the Amsterdam 70-gene breast cancer 

signature) categorises tumours as either high or low risk, in patient lymph node negative, 

whereas Oncotype DX
TM

 (an assay of a panel of 21 genes designed for use in ER positive 

tumours) reports a Recurrence Score (RS), where a higher RS is associated with a worse 

prognosis. Other tests have also been performed such as Mammostrat®, BreastOncPx
TM

, 

MapQuant Dx
TM

 and eXagenBC (Reis-Filho & Pusztai, 2011; Ross et al., 2008). 

 

 

3.1.1 Illumina Approach  

The Illumina, Inc. (San Diego, CA, USA) company developed and markets integrated 

array-based systems and assays for a broad range of applications including genotyping, gene 

expression and epigenetics. Illumina offers basically two microarray platforms: the Sentrix® 

Array Matrix (SAM) and the Sentrix® BeadChip; both containing hundreds of thousands of 

copies of covalently attached oligonucleotide probes (Steemers & Gunderson, 2005). The 

custom microarray Illumina SAM is configured with 96 fiber-optic bundles, each comprising an 

individual array. This unique format allows fast, simple and simultaneous analysis of samples 

on 96 arrays. For users with more moderate throughput demands, Illumina has introduced the 

BeadChip format. In general, the properties are similar to SAM, however BeadChip are used to 

process up to 16 samples per chip (http://www.illumina.com). 

The company’s proprietary BeadArray™ technology – now used in leading genomics 

centres around the world – provides the throughput, cost effectiveness and flexibility necessary 

to enable researchers in the life sciences and pharmaceutical industries to perform the billions of 

tests. This technology is based on 3-micron silica beads randomly arranged, with each bead 

binding many identical copies of a gene-specific probe. The BeadArray™ is constructed so that 

http://www.illumina.com/
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there are roughly 30 randomly positioned replicates in microwells on either of two substrates: 

fiber optic bundles or planar silica slides. When randomly assembled on one of these two 

substrates, the beads have a uniform spacing of ~5.7 microns. Each bead is covered with 

hundreds of thousands of copies of a specific oligonucleotide that act as the capture sequences 

in one of Illumina’s assays. BeadArray™ technology is utilised in Illumina's iScan System for a 

broad range of DNA and RNA analysis applications (Steemers & Gunderson, 2005). 

Importantly, the design yields higher confidence calls and more robust estimations of 

microarrays (Du et al., 2008). 

Illumina has developed a spectrum of proprietary assays for application on microarray 

platform. The BeadChip format is currently used in Illumina's Infinium™ Genotyping, DASL™ 

Gene Expression, and Focused Arrays applications (GoldenGate®). These assays have been 

successfully employed, including collection of the majority of the Phase I genotyping data for 

the International HapMap Project. Illumina is focusing on extending the applications of the 

above assays and developing new assays for future products. Illumina’s goal is to deliver high-

performance, high-throughput solutions that enable researchers to expand experimental scale 

while reducing the cost of large-scale research (Steemers & Gunderson, 2005). 

 

 

3.1.2 Affymetrix Platforms 

Affymetrix (Santa Clara, CA, USA) is a company that manufactures high quality DNA 

microarrays. The Affymetrix GeneChip® System uses arrays fabricated by direct synthesis of 

thousands of oligonucleotides probes on the glass surface using the photolithographic 

technology (a process of using light to control the manufacture of multiple layers of material). 

This direct synthesis approach improves the accuracy of the arrays and avoids the need for 

probe sequence verification. In addition, the probe sets are given different suffixes to describe 

their uniqueness or their ability to bind different genes or splice variants (Bumgarner, 2013). 

Affymetrix GeneChip® micro arrays are current the most commonly used (McCall & 

Almudevar, 2012). In this technology, probes for messenger (mRNA) and long intergenic non-

coding RNA transcripts (lincRNA) are distributed randomly across the chip to nullify any 

region specific bias. Samples for hybridisation (targets) are antisense copy RNA (cRNA) made 

in vitro using T7 RNA polymerase in the presence of biotinylated ribonucleotides Bio-CTP and 

Bio-UTP. Moreover, control and experimental samples are hybridised into separate chips and a 

comparison is performed to determine the differential expression levels. After hybridisation, the 
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chip is stained and read with a confocal scanner. Once scanned, the software computes cell 

intensity data (CEL files) based on captured image file. It contains a single intensity value for 

each probe cell delineated by the grid, estimated by the Cell Analysis algorithm 

(http://www.affymetrix.com).  

Because of the variety of GeneChip® available for the Affymetrix platform, the 

compatible applications are divided into various classes: Whole Transcript Expression 

(GeneChip® Sample HTA 2.0 Array Data, Exon 1.0 ST Array Sample Data, Gene 1.0 ST Array 

Sample Data);  SNP & CNV DNA (Genome-Wide Human SNP Arrays and Genotype and 

Allele Frequency Data); Regulation & Tiling (ChIP-on-chip); 3' RNA (High Throughput Plate 

Data and 3' Expression Sample Data); and Integrated Genomics (Human Tiling 1.0 & Human 

U133 Expression Data). As the applications for GeneChip® Arrays continue to grow in number, 

the available software tools also evolve in variety and scope. It clearly demonstrates high 

performance and provides a power physical coverage of the elements in the cellular system, 

thereby significantly increasing the overall picture of genomics, transcriptomics and proteomics, 

besides epigenomics variables. 

 

 

3.2 The METABRIC Breast Cancer Data Set 

 

3.2.1 Biospecimen Collection and Ethics Approval 

METABRIC has described a collection of primary fresh frozen breast cancer specimens 

and a subset of normal tissues, selected from tumour banks in the United Kingdom and Canada. 

The consortium integrated genomic and transcriptomic data, composed by a subset of 2136 gene 

expression arrays (Illumina_Human_WG-v3) and 2477 genotyping arrays (Affymetrix SNP 6.0) 

(Table 3.1). In turn, gene expression and genotyping values are detailed for primary tumours in 

the discovery (997) and validation (995) sets, with comprehensive patient long-term clinical and 

pathological outcomes. High quality cRNA data is also available for 144 normal samples, 

derived from adjacent normal breast tissue (non-tumour); and DNA information for 485 normal 

samples, extracted from adjacent tissue or peripheral blood. Importantly, the mentioned normal 

subset (controls) matches the tumours in the discovery set (Curtis et al., 2012).  

 

http://www.affymetrix.com/
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Table 3.1 METABRIC microarray data description 

Microarray Data Type Number of Samples
 

Data Description 

Gene Expression Data set 

(cRNA microarray) 

2136 

997 

995 

144 

Tumour samples – Discovery set 

Tumour samples – Validation set 

Normal breast samples (Controls) 

Genotyping Data Set 

(SNP, CNA, CNV) 

2477 

997 

995 

485 

Tumour samples – Discovery set 

Tumour samples – Validation set 

Normal samples (Controls) 

 

 

The related gene expression and genotyping data are hosted by the European 

Bioinformatics Institute (EBI) and deposited in the European Genome-Phenome Archive (EGA) 

at http://www.ebi.ac.uk/ega/, under accession number EGAS00000000083 (Table 3.2). The 

microRNA information is also available under EGAS00000000122 (Table 3.3). An agreement 

among members of the consortium and funders, nevertheless, governs the terms for accessing 

the METABRIC data, besides the conditions for archiving the array files (Curtis et al., 2012b). 

To support this information, the paperwork comprising the data access application may be 

downloaded from http://www.combio.group.cam.ac.uk/Resources/METABRIC.html. As 

regards the application, the document “Data Access Application Form” was submitted in 

December/2012, with a project and/or purpose following the rules and procedures respectively 

established in “Data Access Agreement” and “Guidelines and Information”. After the review by 

the METABRIC Data Access Committee, the permission for downloading the microarray files 

was granted in February/2013.  

Primary invasive breast cancer and normal breast tissue were obtained with appropriate 

ethical consent from the relevant institutional review board. The METABRIC study protocol, 

detailing the molecular profiling methodology, was approved by the ethics committees in 

Cambridge and Vancouver (Addenbrooke’s Hospital, Cambridge, United Kingdom; Guy’s 

Hospital, London; Nottingham; Vancouver; Manitoba), the two sites responsible for the 

molecular analysis of the samples (Curtis et al., 2012). The data is protected and subjected to 

applicable international laws, which include the UK Data Protection Act 1998 the Personal 

Information Protection and Electronic Documents Act (Canada) (“PIPEDA”), the Freedom of 

Information and Protection of Privacy Act, R.S.B.C. 1996 c. 165 (“FOIPPA”) and the Personal 

Information Protection Act, 2003, S.B.C., c. 63 (“PIPA”). 

http://www.ebi.ac.uk/ega/
http://www.combio.group.cam.ac.uk/Resources/METABRIC.html
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Table 3.2 Data accession – gene expression and genotyping information 

Data set ID Technology NS
a 

Description 

EGAD00010000164 Affymetrix SNP 6.0 1992 Affymetrix 6.0 CEL files 

EGAD00010000162 Illumina HT 12 2136 Illumina HT 12 IDATS 

EGAD00010000210 Illumina HT 12 997 

Normalised expression data;  

Discovery set
 

EGAD00010000211 Illumina HT 12 995 

Normalised expression data;  

Validation set
 

EGAD00010000212 Illumina HT 12 144 

Normalised expression data;  

Normals 

EGAD00010000213 Affymetrix SNP 6.0 997 
Segmented (CBS

b
) copy number 

aberrations (CNA); Discovery set 

EGAD00010000214 Affymetrix SNP 6.0 997 
Segmented (CBS) copy number 

variants (CNV); Discovery set  

EGAD00010000215 Affymetrix SNP 6.0 997 
Segmented (CBS) copy number 

aberrations (CNA); Validation set 

EGAD00010000216 Affymetrix SNP 6.0 997 
Segmented (CBS) copy number 

variants (CNV); Validation set  

EGAD00010000217 Affymetrix SNP 6.0 997 
Segmented (HMM

c
) copy number 

aberrations (CNA); Discovery set 

Note: 
a
NS – number of samples; 

b
CBS – circular binary segmentation; 

c
Hidden Markov Model. 

 

 

Human research projects conducted at the University of Newcastle by staff and students 

also require approval from the University's Human Research Ethics Committee (HREC). 

According to HREC, the project nominated "An investigation on the consensus between 

different genomic and transcriptomic results in breast cancer" ensures compliance with 

regulatory and legislative requirements and policies relating to human research. The use of this 

data set was approved by the HREC of The University of Newcastle, Australia, (approval 

number: H-2013-0277). This confirms the protection of the welfare and rights of participants in 

research, which is compulsory on all institutions and organisations that receive research funding 

from the Australian government.  
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Table 3.3 Data accession – microRNA expression information 

Data set ID Technology NS
a 

Description 

EGAD00010000434 Illumina HT 12 1302 Normalised mRNA expression 

EGAD00010000436 Illumina HT 12 1302 Illumina HT 12 IDAT files 

EGAD00010000438 Agilent ncRNA 60k 1480 
Normalised miRNA expression 

data 

EGAD00010000440 
Affymetrix SNP 6.0 

raw 
1302 Segmented copy number data 

EGAD00010000442 
Affymetrix SNP 6.0 

raw 
1302 Affymetrix SNP 6.0 CEL files 

EGAD00010000444 Agilent ncRNA 60k 1480 Agilent ncRNA 60k txt files 

Note: 
a
NS – number of samples. 

 

 

3.2.2 Gene Expression Data Description  

The METABRIC data transcriptome profiling was performed using the Illumina 

Totalprep RNA amplification kit (Ambion, Warrington, UK) and hybridised onto the Illumina 

HT-12 v3 Expression Beadchips per the manufacturer’s instructions. The R language and 

environment was applied to process BeadChips, once scanning was complete and raw data were 

available. Processing included the generation of quality assessment information and adjustment 

for spatial artefacts. As a result, the data were summarised as a series of matrix – 48803 probes 

as rows, and sample ids representing the number of columns – containing values of log2 

intensities and standard errors. For quality-control, arrays were then normalised to remove 

partly the probe-level data artefacts. As a result, the normalisation method makes the chips have 

identical intensity distribution (Curtis et al., 2012).  

 

 

3.2.3 Genotype Calling  

DNAs were hybridised with the Affymetrix SNP 6.0 arrays per the manufacturer’s 

instructions (Affymetrix, Santa Clara/ CA) and analysis of copy number and genotyping were 

performed on the Affymetrix SNP 6.0 platform. In this scenery, the SNP CEL files are available 
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for download and processing. For instance, after the METABRIC managed the files, each probe 

was flagged as an inherited CNV when the sequences in the tumour samples within a region 

matched in the HapMap or in the Normals list. On the other hand, the frequencies of CNAs 

were obtained after removing these CNVs from the data and after matching with correspondent 

normal breast samples or blood, when available (Curtis et al., 2012; Dunning et al., 2010).  

Furthermore, summaries germline CNV alterations were computed as LOSS and GAIN; 

and CNA represented by loss homozygous and hemizygous (HOMD and HETD, respectively), 

neutral (NEUT), gain and amplification (GAIN and AMP, respectively), and high-level 

amplification (HLAMP). Note that germline and somatic events were treated separately, 

however in some cases more than one event can occur within different segments of the same 

gene. For instance, a sample may exhibit a gain and neutral segment or, alternatively, a region 

of loss and gain within a gene. The entire information of CNV and CNA from this data set can 

be assessed in Supplementary Information in Curtis et al. (2012).  

 

  

3.2.4 The Breast Cancer Cohort 

The genomic and transcriptomic analysis of breast cancer performed by Curtis et al. 

(2012) defined the integrative cluster groups: IntClust 1 to IntClust 10. Other relevant details 

concerning the comprehensive investigation of breast tumours include: age of diagnosis; 

menopausal status; survival analysis; tumour grade, size and stage; lymph nodes metastasis; 

histological type; hormonal ER and PR condition; HER2 amplification; and P53 mutation 

(Curtis et al., 2012). The PAM50 intrinsic subtypes (luminal A, luminal B, HER2-enriched, 

normal-like and basal-like) (Parker et al., 2009) are also provided as well as the list of genes and 

annotated probes on the Illumina HT-12 v3 BeadChip used for classification (Curtis et al., 

2012). 

 

 

3.3 ROCK: Integrative Breast Cancer Data   

 

The second data set integrates the Research Online Cancer Knowledgebase (ROCK) online 

interface (Sims et al., 2010; Ur-Rehman et al., 2013) and is publicly available at Gene 
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Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/), under data source access 

GSE47561. This source integrates ten data studies (Table 3.4) performed on the Affymetrix 

Human Genome U133A Array (HG-U133A) platform, from GEO and EBI. The matrix contains 

log2 RMA re-normalised gene expression data in a unique comprehensive report of 1570 

samples. Thus, the GSE47561 data set was used as a second validation set to test our method. In 

brief, both METABRIC and ROCK data sets have information on patients' long-term clinical 

and pathological outcomes, including the sample assignment into intrinsic subtypes (luminal A, 

luminal B, HER2-enriched, normal-like, and basal-like) according to the PAM50 method 

(Parker et al., 2009). The METABRIC data set has a more comprehensive description of patient 

clinical features, whereas the ROCK data set contains limited survival information across the 

ten different studies. 

 

 

Table 3.4 Overview of the ten data sets in the ROCK online portal 

Samples 
Microarray 

Technology 

Microarray 

Platform 
Rep. Accession Reference 

286 Affymetrix HG-U133A GEO GSE2034  (Wang et al., 2005) 

200 Affymetrix HG-U133A GEO GSE11121  (Schmidt et al., 2008) 

230 Affymetrix HG-U133A GEO GSE20194  

(Popovici et al., 2010) 

(MAQC Consortium, 2010) 

159 Affymetrix HG-U133A/B GEO GSE1456  (Pawitan et al., 2005) 

  96 Affymetrix HG-U133A GEO GSE2603  (Minn et al., 2005) 

149 Affymetrix HG-U133A/B GEO GSE6532  

(Loi et al., 2007) 

(Loi et al., 2008) 

  42 Affymetrix HG-U133A GEO GSE20437  (Graham et al., 2010) 

115 Affymetrix HG-U133A EBI E-TABM-185  

(Lukk et al., 2010) 

(Wu et al., 2013) 

198 Affymetrix HG-U133A GEO GSE7390  

(Desmedt et al., 2007) 

(Patil et al., 2015) 

95 Affymetrix HG-U133A GEO GSE5847 (Boersma et al., 2008) 

Note: Rep. – Repository. 

http://www.ncbi.nlm.nih.gov/geo/
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CHAPTER 4 

 

4. IDENTIFICATION OF NOVEL BIOMARKERS 

FOR BREAST CANCER SUBTYPING  

 

Chapter 4 refers to the first work on the METABRIC data set and outlines the challenges 

involved with identifying breast cancer intrinsic subtypes. The content is structured as a 

research paper – 4.1 Introduction, 4.2 Methods, 4.3 Results, 4.4 Discussion, 4.5 Conclusion, 

4.6 References and 4.7 Supporting Information – consistent with our publication in PLoS 

One
6
. The purpose of this analysis is to: a) identify novel biomarkers for subtype individuation 

by exploring the competence of the CM1 score, and b) apply ensemble learning, as opposed to 

the use of a single classifier, for sample subtype assignment.  To achieve this, we select probes 

with highly discriminative patterns of expression across samples for each intrinsic subtype. We 

further assessed the ability of these probes on assigning correct subtype labels using an 

ensemble learning approach. Accordingly, I portray well-established genes and novel 

biomarkers for predicting breast cancer intrinsic subtypes. These subtypes are compared with 

clincopathological information – current clinical markers ER, PR and HER2 – and survival data 

in the METABRIC and ROCK data sets.  

 

                                                      
6
 Milioli, H. H., Vimieiro, R., Riveros, C., Tishchenko, I., Berretta, R., & Moscato, P. (2015). The 

Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and 

Reconciles the Labels in the METABRIC Data Set. PLoS One, 10(7), e0129711. 
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4.1 Introduction 

 

Breast cancer has been perceived as several distinct diseases characterised by intrinsic 

aberrations, heterogeneous behaviour and divergent clinical outcomes (Reis-Filho & Pusztai, 

2011). The classification of breast cancer in discernible molecular subtypes has motivated 

translational researchers in the past decades towards the design of patient prognosis and the 

development of tailored treatments (Portier et al., 2012). In this scenario, the analysis of breast 

tumours using microarray data has significantly improved the disease taxonomy and the 

discovery of new biomarkers for implementation in clinical practice (Dowsett et al., 2013; Kelly 

et al., 2012; Prat et al., 2012; van't Veer et al., 2002). In the early 2000s, five intrinsic subtypes 

were proposed: luminal A, luminal B, HER2-enriched, normal-like and basal-like breast 

tumours (Perou et al., 2000; Sørlie et al., 2001; Sørlie et al., 2003). Following this initial 

molecular taxonomy, further sub-classifications of breast cancer in distinct entities have been 

suggested (Herschkowitz et al., 2007; Lehmann et al., 2011; Prat et al., 2010). 

The transcriptomic patterns observed across subtypes has given us insight into the 

molecular complexity and inherent alterations in tumour cells modelling the breast cancer 

heterogeneity and unpredicted outcome (Nielsen et al., 2010; Weigelt; Baehner; et al., 2010). 

Strikingly, intrinsic gene lists have been explored to reliably assign breast tumour samples into 

formal molecular subtypes, survival rate and treatment outline (Bastien et al., 2012; 

Herschkowitz et al., 2007; Hu et al., 2006; Parker et al., 2009; Perou et al., 2000; Sørlie et al., 

2001; Sørlie et al., 2003; van De Vijver et al., 2002). Recently, Parker et al. (2009) proposed a 

list of 50 genes that together with the Prediction Analysis for Microarrays (PAM) classification 

algorithm (Tibshirani et al., 2002) aimed at identifying subtypes and enlarging the prognostic 

information with high potential for validation in clinical settings (Parker et al., 2009; Perou et 

al., 2010; Weigelt; Mackay; et al., 2010). The resulting technique, called the PAM50 method, 

has been widely applied to categorise tumours into one of the five classical intrinsic subtypes.  

Although independent cohorts attempted to identify molecular subtypes, the chosen 

microarray-based Single Sample Predictor (SSP) model revealed unreliable assignments and 

modest agreement between studies (Haibe-Kains et al., 2012; Weigelt; Mackay; et al., 2010). In 

fact, the perceived inability of some analytical methods to deal with the challenges of 

processing high-dimensional data, in addition to the difficulties on validating 

independent/unpaired technologies may limit the precise characterisation of the subtypes 

(Sotiriou & Pusztai, 2009; Weigelt; Mackay; et al., 2010; Weigelt & Reis-Filho, 2009). 
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Therefore, novel methods are urgently needed in order to provide better tumour stratification 

and accurate biomarkers identification (Colombo et al., 2010; Weigelt et al., 2012). In this 

scenario, the high quality of the microarray gene expression data set processed by METABRIC, 

with over 2000 samples (Curtis et al., 2012), offers a unique opportunity to refine and expand 

the list of transcripts that best discriminate intrinsic subtypes. A precise classification of breast 

tumours, consequently, would lead to improvements in the valuation of the disease, currently 

guided by oestrogen and progesterone receptor (ER and PR) status, and HER2 amplification 

(Ambs, 2010; Weigelt & Reis-Filho, 2009).  

In this report, we focus on the use of a ranking feature method based on the CM1 score 

(Marsden et al., 2013) to identify probe sets that appear naturally from the METABRIC breast 

cancer data set. For doing so, we use the entire set of 48803 probes as an alternative to the 

selection from pre-existing literature as performed by other authors. Moreover, the quality of the 

probes for predicting subtypes is carefully appraised in the METABRIC data set (Illumina 

BeadArray) and further validated in different studies (Affymetrix GeneChip) accessed through 

the ROCK interface (Ur-Rehman et al., 2013). However, instead of relying on a single method 

to assign sample subtype, as suggested by Parker et al. (2009) with the PAM50 method, we 

explore ensemble learning. Our analysis is based on the performance of a large set of 

classification models from the Weka software suite (Witten et al., 2016); a technique previously 

recommended by Gómez-Ravetti and Moscato (2008). The classifiers are used in combination 

with the list of probes selected using CM1 score and, alternatively, with the 50 genes from the 

PAM50 commercial assay. We also compute several statistical measures to determine the power 

of both lists on predicting breast cancer subtypes. Ultimately, we correlate the study outcomes 

within current clinical information and survival analysis. 

 

 

4.2 Methods 

 

4.2.1 Study Design and Computing Resources 

In this study, we propose a systematic approach that aims at improving breast cancer 

subtype prediction. The systematic approach is built based on feature selection and data mining 

concepts. We first compute the CM1 score – using the microarray mRNA expression values – to 

rank the whole set of probes based on their discriminative power across breast cancer subtypes. 
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We then select the top 10 probes that best represent each intrinsic subtype. The quality of this 

selection is assessed using a set of classifiers from the Weka software suite with the 

METABRIC and ROCK data sets, followed by the statistical analysis. The process flow is 

depicted in Figure 4.1, and further explained in the remainder of this section. 

 

 

Figure 4.1 The step-by-step process 

The image shows the method steps based on CM1 score and ensemble learning. The 

METABRIC discovery set is used to compute the CM1 score, based on the original labels 

previously assigned with the PAM50 method. This step has an output of 42 discriminative 

probes selected, the CM1 list. The following step involves the sample subtype classification 

based on a 10-fold cross-validation. Samples in the METABRIC discovery set are considered to 

train 24 classifiers using the CM1 list and, alternatively, the PAM50 list. The samples are 

partitioned into ten folds; then a model is built using 90% of samples, which is used to predict 

the labels of the remaining 10%. After the ten turns are finished, the level of association 

between the predicted and original METABRIC labels is computed using several statistics. In 

the training-test setting, labels of samples in the METABRIC validation set and ROCK set are 

predicted with the models built in the discovery. Statistics measurements are again computed to 

assess the model performance on predicting breast cancer subtypes. In both classification steps, 

the new labels are attributed based on the consensus of the majority of the classifiers. Finally, 

the results or new labels are compared against the clinical data, the current markers ER, PR and 

HER2, and survival curves. 
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4.2.2 Selection of Biomarkers Using the CM1 Score  

The CM1 score is a supervised univariate method used to measure the difference in 

expression levels of samples in two different classes (Marsden et al., 2013). In this study, it is 

used as a ranking feature to select a subset of highly discriminative probes for each breast 

cancer intrinsic subtype. Let X and Y be a partition of a set of samples into two classes, with X 

the ‘class of interest’ and Y the ‘remaining classes’. A sample either belongs to X or to Y. For 

each probe i we compute the CM1 score (Equation 4.1) as: 

 

Equation 4.1 CM1 score 

  

where �̅�𝑖   is the average expression value of the probe i for samples in class X,  �̅�𝑖   is the average 

expression value of the probe i for samples in class Y ; max(yi) and min(yi) are the maximum 

and minimum expression values of the probe i for samples in the class Y, respectively. 

Equation 4.1 can be interpreted as the normalised difference between the averages of 

expression values in the class X and Y. The normalisation is proportional to the range of values 

in Y.  

To define the most discriminative probes for each breast cancer subtype (luminal A, 

luminal B, HER2-enriched, normal-like and basal-like), we computed the CM1 score for each of 

48803 probes taking the subtype of interest and the remaining ones. This results in 5 lists of 

48803 CM1 scores.  

Considering the fact that (Parker et al., 2009) were able to define the five breast cancer 

classes based on 50 genes, for each subtype we chose the 10 most important probes (5 with the 

greatest positive CM1 score values – indicating up-regulated probes relative to the other 

subtypes –, and 5 with the smallest negative values – representing down-regulation). This set is 

referred to as the balanced top ten in this paper. Collecting the balanced top ten lists of all 

subtypes leads to a new set of 42 unique Illumina probes, meaning that 8 probes appear in 

multiple subtypes. This list is hereafter called the CM1 list. 
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4.2.3 The Quality of CM1 List Based on Ensemble Learning 

The quality of the CM1 list for distinguishing subtypes was assessed using a list of 

well-known classifiers available in the Weka data mining software suite (Witten et al., 2016). It 

uses different types of classifiers such as bayesian, functions, lazy, meta, rule-based and 

decision trees. Each classifier was trained with a subset of the data comprising all samples in the 

METABRIC discovery set and the 42 probes in the CM1 list using both 10-fold cross-validation 

and training-test setting. In the 10-fold cross-validation, the samples are first partitioned into ten 

folds; then a model is built using 90% of samples, which is thereafter used to predict the labels 

of the remaining 10%. After the ten turns are finished, the level of association between the 

predicted and original METABRIC labels is computed using Cramer's V (Liebetrau, 1983). In 

the training-test setting, labels of samples in the METABRIC validation set and ROCK data are 

predicted using models built with the samples in the discovery set. The new labels were 

attributed based on the consensus of the majority of the classifiers (i.e. more than 50% percent), 

and whenever such condition was not achieved samples were marked as inconsistent (INC). 

 A similar approach was performed with the PAM50 list to serve as baseline for 

comparing the results obtained with the 42 probes from the CM1 list. The 50 genes identified by 

(Parker et al., 2009) were mapped to Illumina probes by Curtis et al. (2012), following strict 

criteria. Only genes and corresponding probe with perfect annotation (Dunning et al., 2010) on 

the Illumina HT-12 v3 BeadChip were considered. Probes containing SNPs, multiple targets or 

mismatches, or lying in repeat-masked regions were discarded. Finally, a total of 48 probes 

corresponding to genes in the PAM50 list were selected to conduct the classification 

experiments as described for the CM1 list. For Affymetrics HG-U133A, the CM1 and PAM50 

lists were mapped according to genefu R package, using Entrez Gene ID as reference. For 

instance, the 42 probes from the CM1 list matched 33 probes, whereas the 48 from PAM50 list 

paired 43 probes in the Affymetrix platform. In case of multiple mappings the probe with the 

most variation was selected according to the genefu instructions. Before testing the classifiers in 

ROCK data set, the Affymetrix and Illumina expression levels were min-max normalised. 

 

 

4.2.4 Statistical Analysis 

Cramer's V. Given a r x c contingency table, with “r” rows and “c” columns, describing the 

association between the original labels and those predicted by the majority of classifiers, 

respectively, Cramer's V measures the level of association between those two nominal variables. 
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The statistic ranges from 0, representing no association between the two variables, to 1, 

representing complete association. Cramer's V is computed using Equation 4.2. 

 

Equation 4.2 Cramer's V 

 

where N is the number of samples in the data set, and 𝑋2
 is Pearson's chi-squared value. 

 

Average sensitivity (AS). The average sensitivity (Witten et al., 2016) was also computed to 

assess the performance of classifiers with both lists. The AS is the average proportion of 

accurately classified samples of each subtype. Considering a r x c contingency table associating 

initial and predicted labels, the average sensitivity of a classifier is given by Equation 4.3. 

 

Equation 4.3 Average sensitivity 

 

where r is the number of classes (subtypes), 𝑛𝑖𝑖  is the number of samples of class i correctly 

predicted as i, and 𝑛𝑖 is the number of samples of class i (row marginal). 

 

Fleiss' kappa. The consensus of the different classification methods concerning the samples' 

labels was measured by the popular interrater reliability metric Fleiss' kappa (Fleiss, 1971; 

Fleiss et al., 2004). The statistic was used to gauge not only the agreement among classifiers 

trained with the different probe sets, but also between the labels assigned by the majority of 

classifiers and the original METABRIC labels. It also quantifies the agreement between 

predicted labels using the CM1 and PAM50 lists.  

Assuming a r x c contingency table informing how many times each of the classes were 

assigned to each of the s samples in the k different sample labelling, the Fleiss' kappa statistic is 

computed as defined by Equation 4.4. 
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Equation 4.4 Fleiss' kappa 

 

where 𝑛𝑖𝑗  contains the number of times sample i was assigned label j, ∑ 𝑛𝑖𝑗 = 𝑘𝑗 , and 𝑝𝑗 =

(∑ 𝑛𝑖𝑗)/𝑠𝑘𝑗  is the probability with which the label j is assigned to a sample.  

Kappa values range from [− ∑ 𝑝𝑗
2 /(1 − ∑ 𝑝𝑗

2)] to + 1, which, according to Landis and 

Koch (1977), can be interpreted in the following manner: (1) values below zero show poor 

agreement; (2) 0 ≤ κ ≤ 0.20, slight agreement; (3) 0.21 ≤ κ ≤ 0.40, fair agreement; (4) 0.41 ≤ κ 

≤ 0.60, moderate agreement; (5) 0.61 ≤ κ ≤ 0.80, substantial agreement; and (6) 0.81 ≤ κ ≤ 1, 

almost perfect agreement. 

 

Adjusted Rand Index. The agreement between pairs of sample labellings was also quantified 

using this metric. It ranges between 0 to 1, where 1 indicates an almost perfect concordance 

between the two compared bipartitions, and 0 a complete discordance between them. The 

Adjusted Rand Index is a version of Rand index corrected for chance when the partitions are 

picked at random (Hubert & Arabie, 1985; Vinh et al., 2009). Given a r x c contingency table 

between two labelling R and C, it can be measured by (Equation 4.5): 

 

Equation 4.5 Adjusted Rand Index 

 

 

where 1 ≤ i ≤ r, 1 ≤ j ≤  c, and 𝑛𝑖𝑗 is an entry of the contingency table representing the number 

of samples that are in class 𝑅𝑖 in the partition R and 𝐶𝑗 in the partition C, 𝑛𝑖 and 𝑛𝑗  are the 

table's marginals. 
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4.2.5 Survival Analysis 

The survival analysis for each breast cancer subtype is performed using Cox 

proportional hazards model from the package survival in the R software (Kalbfleisch & 

Prentice, 2011; Therneau & Grambsch, 2000). Only patients who either died due to the disease 

or are still alive are considered for model estimation. The clinical parameters relevant for the 

survival study are chosen in correspondence with Curtis et al. (2012): age at the time of 

diagnosis, tumour size, tumour grade, the number of positive lymph nodes and ER status 

according to immunohistochemistry. Since the probability model based on the observations 

available at certain time points becomes less and less reliable with the increasing time, the 

median survival lines based on the last 10 observations are plotted in dash. Due to the 

compilation of ten different studies and the existence of significant gaps in patients' clinical 

information, the survival curves in the ROCK data set are not representative across subtypes. In 

particular, the number of patients with information about overall survival and disease free 

survival is limited to only 405, with no specification on the cause of death (i.e. if due to disease 

or not). 

 

 

4.3 Results 

 

4.3.1 Section Description and Resources 

To understand the results described in this section, we introduce the sequence of our 

approach which combines the CM1 score and ensemble learning. First, we detail the selection 

of discriminative probes ranked according to the CM1 score; calculated for each of the five 

breast cancer subtypes. Second, we show the quality of our probes by using 24 classification 

models based on a 10-fold cross-validation and training-test setting in the METABRIC and 

ROCK data sets. The same approach is also performed with the list of 50 genes used in the 

PAM50 method. In addition, statistical analysis is reported to determine the power of both lists 

on predicting breast cancer subtypes. Finally, we demonstrate the consistency between the new 

labels assigned with current clinical markers ER, PR and HER2, and survival curves. The step-

by-step approach is detailed in the Materials and Methods section. 
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4.3.2 Using the CM1 List to Differentiate Breast Cancer Subtypes 

The CM1 score was applied to rank the set of 48803 probes for each of the five 

subtypes in the METABRIC discovery data set (Supporting Information Table 4.9). It is 

important to remark that this method used the original PAM50 subtypes attributed to samples in 

the METABRIC discovery set. The purpose of doing so is to provide a better molecular 

characterisation of each class using the wealth of the METABRIC transcriptomic data, besides 

improving the breast cancer subtype prediction. The probes with the top five negative and top 

five positive CM1 scores were selected for each subtype. Here, we aimed at obtaining 50 probes 

that appear naturally from a rich and unique data set. We would then be able to compare such a 

list with the list of 50 genes embedded in the PAM50 method – the PAM50 list. The final list 

comprising the union of the top ranked probes is displayed in Table 4.1, and their CM1 scores 

and ranks in each subtype in Table 4.2. Some of the 50 probes selected, however, discriminate 

more than one subtype and resulted in a list of 42 unique elements, the CM1 list. Our selection 

includes 30 novel biomarkers, while the remaining 12 genes are common with the PAM50 list. 

The effectiveness of the CM1 list for segregating the five subtypes is depicted in Figure 

4.2. The figure shows the expression values of the top five negative and top five positive ranked 

probes for each subtype across 997 samples in the METABRIC discovery set. For instance, the 

ten probes selected for the basal-like subtype – the most representative class – expose a 

consistent separation between samples from this class and the remaining ones. The second heat 

map in Figure 4.3 illustrates the expression levels of unique probes from the CM1 list in the 

Illumina platform, in which rows represent probes and columns represent samples. Rows and 

columns were ordered according to gene expression similarity using a memetic algorithm. This 

image also exposes the overall discriminative power of our list for distinguishing samples of the 

five subtypes.  

A detailed description of our 42 probes in the context of the literature can be found in 

Supporting Information – Text 4.1. Among them we highlight seven, targeting the following 

transcripts: AURKB, CCL15, C6orf211, GABRP, IGF2BP3, PSAT1, and TFF3. Figure 4.4 

shows the box plot of their expression levels across intrinsic subtypes in the METABRIC 

discovery and validation sets, and the ROCK set. We emphasised these transcripts due to the 

remarkable differential expression behaviour across the five classes. Besides, they are novel 

potential markers for breast cancer subtyping, not considered by Parker et al. (2009). Box plots 

of expression levels for all transcripts in the CM1 list in the METABRIC discovery and 

validation and ROCK data sets are provided in Supporting Information – Figure 4.11. Even 
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though those probes were selected from the METABRIC discovery set only, their variation 

across subtypes in the validation set and ROCK test set are also impressive. 

 

 

Table 4.1 CM1 List 

Probe ID Gene name Gene Symbol and Aliases 

ILMN_1684217 Aurora kinase B 

AURKB; AIK2, AIM1, ARK2, AurB, IPL1, 

STK5, AIM-1, STK12, PPP1R48, aurkb-sv1, 

aurkb-sv2  

ILMN_1683450 Cell division cycle associated 5 CDCA5; SORORIN 

ILMN_1747016 Centrosomal protein 55kDa CEP55; CT111, URCC6, C10orf3 

ILMN_2212909 Maternal embryonic leucine zipper kinase MELK; HPK38 

ILMN_1714730 Ubiquitin-conjugating enzyme E2C UBE2C; UBCH10, dJ447F3.2 

ILMN_1796059 Ankyrin repeat domain 30A ANKRD30A; NY-BR-1, RP11-20F24.1 

ILMN_1651329 
Long intergenic non-protein coding RNA 

993 
 LINC00993 

ILMN_2310814 Microtubule-associated protein tau 
MAPT; TAU, MSTD, PPND, DDPAC, 

MAPTL, MTBT1, MTBT2, FTDP-17 

ILMN_1728787 Anterior gradient 3 AGR3; HAG3, hAG-3, BCMP11, PDIA18 

ILMN_1688071 N-acetyltransferase 1 NAT1; AAC1, MNAT, NATI, NAT-1 

ILMN_1729216 Crystallin, alpha B 
CRYAB; MFM2, CRYA2, CTPP2, HSPB5, 

CMD1II, CTRCT16 

ILMN_1666845 Keratin 17 KRT17; PC, K17, PC2, PCHC1 

ILMN_1786720 Prominin 1 
PROM1; RP41, AC133, CD133, MCDR2, 

STGD4, CORD12, PROML1, MSTP061 

ILMN_1753101 
V-set domain containing T cell activation 

inhibitor 1 

VTCN1; B7X, B7H4, B7S1, B7-H4, B7h.5, 

VCTN1, PRO1291, RP11-229A19.4 

ILMN_1798108 Chromosome 6 orf 211 C6orf211  

ILMN_1747911 Cyclin-dependent kinase 1 CDK1; CDC2, CDC28A, P34CDC2 

ILMN_1666305 Cyclin-dependent kinase inhibitor 3 CDKN3; KAP, CDI1, CIP2, KAP1 

ILMN_1678535 Estrogen receptor 1 ESR1; ER, ESR, Era, ESRA, ESTRR, NR3A1 

ILMN_2149164 Secreted frizzled-related protein 1 SFRP1; FRP, FRP1, FrzA, FRP-1, SARP2 

ILMN_1788874 
Serpin peptidase inhibitor, clade A (alpha-1 

antiproteinase, antitrypsin), member 3 
SERPINA3; ACT, AACT, GIG24, GIG25 

ILMN_1785570 Sushi domain containing 3 SUSD3 

ILMN_1803236 Chloride channel accessory 2 CLCA2; CACC, CACC3, CLCRG2, CaCC-3 

ILMN_2161820 Glycine-N-acyltransferase-like 2 GLYATL2; GATF-B, BXMAS2-10 

ILMN_1810978 Mucin-like 1 MUCL1; SBEM 

ILMN_1773459 SRY (sex determining region Y)-box 11 SOX11 
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ILMN_1674533 
Transient receptor potential cation channel, 

suamily V, member 6 

TRPV6; CAT1, CATL, ZFAB, ECAC2, 

ABP/ZF, LP6728, HSA277909 

ILMN_1687235 

ILMN_2358760 
Hepsin HPN; TMPRSS1 

ILMN_1655915 Matrix metallopeptidase 11 (stromelysin 3) MMP11; ST3, SL-3, STMY3 

ILMN_1711470 
Ubiquitin-conjugating enzyme E2T 

(putative) 
UBE2T; PIG50, HSPC150 

ILMN_1740609 Chemokine (C-C motif) ligand 15 

CCL15; LKN1, NCC3, SY15, HCC-2, LKN-1, 

MIP-5, NCC-3, SCYL3, MIP-1D, MRP-2B, 

SCYA15, HMRP-2B, MIP-1 delta 

ILMN_1789507 Collagen, type XI, alpha 1 COL11A1; STL2, COLL6, CO11A1 

ILMN_1651282 Collagen, type XVII, alpha 1 
COL17A1; BP180, BPA-2, BPAG2, LAD-1, 

BA16H23.2 

ILMN_1723684 
Duffy blood group, atypical chemokine 

receptor 

DARC; FY, Dfy, GPD, GpFy, ACKR1, 

CCBP1, CD234, WBCQ1 

ILMN_1809099 Interleukin 33 
IL33; DVS27, IL1F11, NF-HEV, NFEHEV, 

C9orf26, RP11-575C20.2 

ILMN_1766650 Forkhead box A1 FOXA1; HNF3A, TCF3A 

ILMN_1811387 Trefoil factor 3 (intestinal) TFF3; ITF, P1B, TFI 

ILMN_1738401 Forkhead box C1 
FOXC1; ARA, IGDA, IHG1, FKHL7, IRID1, 

RIEG3, FREAC3, FREAC-3 

ILMN_1689146 
Gamma-aminobutyric acid (GABA) A 

receptor, pi 
GABRP 

ILMN_1807423 
Insulin-like growth factor 2 mRNA binding 

protein 3 

IGF2BP3; CT98, IMP3, KOC1, IMP-3, 

VICKZ3 

ILMN_1692938 Phosphoserine aminotransferase 1 PSAT1; PSA, EPIP, PSAT 

ILMN_1668766 Rhophilin associated tail protein 1 
ROPN1; CT91, ODF6, ROPN1A, RHPNAP1, 

ropporin 

 

 

 

 

 

 

 

Table 4.2 Scores and ranks for the CM1 list 

Probe ID Score rank score Rank score rank score rank score  Rank 

ILMN_1728787 0.20 5 0.14 5 -0.31 2 

 

54 -0.46 3 
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ILMN_1796059 0.22 3 

 

8730 

 

1434 

 

3666 -0.39 5 

ILMN_1684217 -0.20 1 

 

74 

 

497 

 

146 

 

97 

ILMN_1798108 

 

1980 0.16 2 

 

68 

 

405 

 

179 

ILMN_1740609 

 

476 

 

43 

 

970 0.252 3 

 

2776 

ILMN_1747911 

 

80 0.14 4 

 

2080 

 

194 

 

1496 

ILMN_1683450 -0.20 3 

 

30 

 

306 

 

79 

 

166 

ILMN_1666305 

 

16 0.15 3 

 

438 

 

167 

 

917 

ILMN_1747016 -0.20 5 

 

88 

 

362 

 

73 

 

127 

ILMN_1803236 

 

1875 

 

354 0.32 3 

 

688 

 

13483 

ILMN_1789507 

 

12176 

 

5363 

 

1820 -0.155 3 

 

9245 

ILMN_1651282 

 

915 

 

16 

 

4821 0.244 4 

 

12205 

ILMN_1729216 

 

6657 -0.15 5 

 

3008 

 

52 

 

45 

ILMN_1723684 

 

456 

 

14 

 

2830 0.255 2 

 

4215 

ILMN_1678535 

 

8 0.18 1 -0.36 1 

 

7 -0.44 4 

ILMN_1766650 

 

70 

 

85 

 

12522 

 

216 -0.48 2 

ILMN_1738401 

 

1047 

 

10 

 

2254 

 

226 0.44 1 

ILMN_1689146 

 

1177 

 

13 

 

1833 

 

283 0.41 2 

ILMN_2161820 

 

310 

 

270 0.33 1 

 

791 

 

1479 

ILMN_1687235 

 

79 

 

1942 

 

58 -0.157 2 

 

211 

ILMN_2358760 

 

105 

 

1941 

 

73 -0.152 4 

 

284 

ILMN_1807423 

 

1269 

 

2087 

 

21820 

 

11567 0.41 3 

ILMN_1809099 

 

3400 

 

141 

 

6282 0.275 1 

 

23413 

ILMN_1666845 

 

8365 -0.19 2 

 

3879 

 

35 

 

29 

ILMN_1651329 0.22 1 

 

2481 

 

1149 

 

1159 

 

20 

ILMN_2310814 0.22 2 

 

8776 

 

33 

 

1131 

 

23 

ILMN_2212909 -0.20 4 

 

137 

 

501 

 

92 

 

65 

ILMN_1655915 

 

5274 

 

3486 

 

3832 -0.166 1 

 

4148 

ILMN_1810978 

 

20520 

 

9 0.33 2 

 

6 

 

1495 

ILMN_1688071 0.22 4 

 

902 -0.26 5 

 

24 

 

19 

ILMN_1786720 

 

988 -0.17 3 

 

273 

 

465 

 

20 

ILMN_1692938 

 

68 

 

343 

 

93 

 

1864 0.39 5 

ILMN_1668766 

 

721 

 

62 

 

1415 

 

368 0.41 4 

ILMN_1788874 

 

148 

 

4633 -0.26 4 

 

1961 

 

1462 

ILMN_2149164 

 

11497 -0.20 1 

 

1697 0.244 5 

 

40 

ILMN_1773459 

 

185 

 

621 0.29 5 

 

10046 

 

483 

ILMN_1785570 

 

11 

 

2499 -0.31 3 

 

438 

 

82 

ILMN_1811387 

 

26 

 

64 

 

1263 

 

661 -0.52 1 

ILMN_1674533 

 

643 

 

605 0.30 4 

 

2756 

 

1819 

ILMN_1714730 -0.20 2 

 

9 

 

318 

 

43 

 

353 

ILMN_1711470 

 

56 

 

7 

 

1732 -0.145 5 

 

1113 

ILMN_1753101 

 

474 -0.15 4 

 

2424 

 

3373 

 

1522 
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Figure 4.2 The gene expression profile of the balanced top ten probes selected for 

each of the five breast cancer intrinsic subtypes across 997 samples from the 

discovery set.  

The annotated genes are defined for each subtype as an intrinsic, highly discriminative, 

signature. Samples were ordered according to the gene expression similarities in each 

breast cancer subtype. Colours represent the selected genes and sample subtypes: 

luminal A (yellow), luminal B (green), HER2-enriched (purple), normal-like (blue), and 

basal-like (red). 
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Figure 4.3 Gene expression patterns of the 42 probes selected using the CM1 score 

The heat map diagram exhibit 42 probes (rows) and 997 samples (columns) from the discovery 

set ordered according to gene expression similarity, based on a memetic algorithm [27]. The 

labels highlighted on top show the sample distribution according to the ER positive and 

negative status. It also illustrates the original PAM50 subtypes luminal A (yellow), luminal B 

(green), HER2-enriched (purple), normal-like (blue), and basal-like (red) in the METABRIC 

discovery set. Two probes in the CM1 list refer to the same gene, HPN, which was then 

appended with the corresponding Illumina probe ID. 
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Figure 4.4 The mRNA log2 normalised expression values of 7 novel highly discriminative 

biomarkers across the five intrinsic subtypes 

The box plot uncover the values of 997 samples in the METABRIC discovery set, 989 in the 

validation set, and 1570 in the ROCK test set. 

 

 

4.3.3 The High Levels of Agreement Between CM1 and PAM50 Lists  

After applying the ensemble learning, several statistical measures were computed as 

referred in Materials and Methods. The main purpose of the statistics is to determine the 

performance of the 24 classification methods from the Weka software suite. In other words, we 

investigate the consistency of intrinsic subtype labels attributed by the majority of classifiers 

having as input either the CM1 or PAM50 lists. The quality of both lists was estimated 

according to the Cramer's V statistic and the Average Sensitivity. Additionally, we computed 

the popular interrater reliability metric Fleiss' kappa to establish the consensus of sample 

labelling across different classifiers. This metric was used to gauge the agreement among 

classifiers trained with CM1 and PAM50 lists against the original labels in the data sets, and 

between the labels assigned by the majority of classifiers using both lists. Ultimately, we 

applied the Adjusted Rand Index to quantify the agreement between pairs of samples that are 

either in the same class or in different classes according to both lists.  
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Average Cramer's V statistic and Average Sensitivity to measure the performance of 

individual classifiers.  

We determined the performance of the ensemble learning (Supporting Information – 

Table 4.10 The performance of the classifiers using the CM1 list 

Table describing the performance of each classifier on the METABRIC discovery and 

validation sets, and ROCK test set using the CM1 list is summarised below (Table 4.10s). The 

original published file shows the percentage of correctly, incorrectly and not classified samples, 

Fleiss Kappa index, Cramer’s V, Average Sensitivity, and other values for classification. The 24 

classifiers from the Weka software suite are also listed. In addition, it contains the labels 

predicted by each classifier. Count of predicted labels was obtained with the consensus of the 

majority of classifiers. 

Available online: doi:10.1371/journal.pone.0129711.s004 

 

Supporting Information – Table 4.11 

Table 4.11 The performance of the classifiers using the PAM50 list 

Table describing the performance of each classifier on the METABRIC discovery and 

validation sets, and ROCK test set using the PAM50 list is summarised below (Table 4.11s). 

The original published file shows the percentage of correctly, incorrectly and not classified 

samples, Fleiss Kappa index, Cramer’s V, Average Sensitivity, and other values for 

classification. The 24 classifiers from the Weka software suite are also listed. In addition, it 

contains the labels predicted by each classifier. Count of predicted labels was obtained with the 

consensus of the majority of classifiers. 

Available online: doi:10.1371/journal.pone.0129711.s005 

Table 4.10 and Table 4.11) with two measures: Cramer's V statistic and Average 

Sensitivity (Table 4.3). Cramer's V is used to measure the strength of association among 

variables in the row and column, given a contingency table (Table 4.4, Table 4.5 and Table 

4.6). The rows represent the original PAM50 labels and the columns the subtypes assigned by 

the majority of the classifiers in the ensemble. For instance, Cramer's V statistic showed an 

average association between original and predicted subtypes of 0.73 ± 0.06 and 0.63 ± 0.04 in 

the METABRIC discovery and validation sets respectively with the CM1 list; and 0.75 ± 0.06 

and 0.64 ± 0.04 with PAM50 list. Expanding the validation process using the ROCK test set, 

Cramer's V ranged from 0.57 ± 0.06 with the CM1, and 0.59 ± 0.05 using PAM50 list. 
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Table 4.3 The ensemble learning overall performance on assigning labels to samples in the 

METABRIC discovery and validation sets, and ROCK test set 

 CM1 list PAM50 list 

Data set CV AS CV AS 

METABRIC discovery 0.73 ± 0.06 0.76 ± 0.06 0.75 ± 0.06 0.78 ± 0.07 

METABRIC validation 0.63 ± 0.04 0.64 ± 0.04 0.64 ± 0.04 0.65 ± 0.05 

ROCK test set 0.57 ± 0.06 0.67 ± 0.08 0.58 ± 0.05 0.69 ± 0.08 

Note: Values are given as average ± std. deviation. CV- Cramer's V; AS- Average Sensitivity. 

 

 

Table 4.4 Contingency tables for predicted labels using classifiers trained with the CM1 

list 

 METABRIC discovery METABRIC validation ROCK test set 

 LA LB H N B I LA LB H N B I LA LB H N B I 

LA 435  19 2 2 0 8 252 2 0 0 0 1 452 122 2 0 0 17 

LB 24 234 0 0 0 10 62 156 0 0 0 6 18 371 42 0 2 14 

H 4 4 67 0 2 10 23 45 71 2 2 10 0 1 13 0 0 0 

N 13 0 8 31 0 6 80  0 0 59 0 5 115  8 36 74 56 50 

B 0 0 10 2 103 3 6 7 22 19 142 17 0 0 0 7 166 4 

Note: Rows contain labels assigned by the majority of classifiers trained with the CM1 list, while 

columns contain the original METABRIC labels assigned using the PAM50 method. In this table, LA 

corresponds to luminal A, LB corresponds to luminal B, H to HER2-enriched, N to normal-like, and B to 

basal-like. Labels marked as I refer to inconsistent assignments; situations where the classifiers did not 

achieve the majority on attributing a subtype label. 

Table 4.5 Contingency tables for predicted labels using classifiers trained with the PAM50 

list 

 METABRIC discovery METABRIC validation ROCK test set 

 LA LB H N B I LA LB H N B I LA LB H N B I 

LA 440 17 1 1 0 7 254 0 0 0 0 1 530 46 2 0 0 15 

LB 25 239 0 0 0 4 56 162 0 0 0 6 53 327 34 0 3 30 

H 0 5 72 0 1 9 21 39 80 0 0 13 0 0 12 0 0 2 

N 9 0 2 34 1 12 82 0 0 55 0 7 105 4 18 92 67 53 

B 0 0 7 1 103 7 4 7 20 14 145 23 0 0 3 0 172 2 

Note: Rows contain labels assigned by the majority of classifiers trained with the PAM50 list, while 

columns contain the original METABRIC labels assigned using the PAM50 method. In this table, LA 

corresponds to luminal A, LB corresponds to luminal B, H to HER2-enriched, N to normal-like, and B to 

basal-like. Labels marked as I refer to inconsistent assignments; situations where the classifiers did not 

achieve the majority on attributing a subtype label. 
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Table 4.6 Contingency tables for predicted labels using classifiers trained with CM1 and 

PAM50 lists 

 METABRIC discovery METABRIC validation ROCK test set 

 LA LB H N B I LA LB H N B I LA LB H N B I 

LA 450 15 0 4 0 7 390 14 1 4 0 14 550 8 0 10 0 17 

LB 20 235 0 0 0 2 12 185 8 0 0 5 112 361 0 0 0 29 

H 0 0 75 2 1 9 0 1 83 0 1 8 0 4 67 0 8 21 

N 0 0 0 28 0 7 6 0 0 61 1 12 0 0 0 67 0 7 

B 0 0 2 0 101 2 0 0 1 0 140 3 0 0 0 2 219 3 

I 4 11 5 2 3 12 9 8 7 4 3 8 26 4 2 13 15 25 

Note: Rows contain the labels assigned by the majority of classifiers trained with the CM1 list, while 

columns contain labels assigned by the majority of classifiers trained with PAM50 list. In this table, LA 

corresponds to luminal A, LB corresponds to luminal B, H to HER2-enriched, N to normal-like, and B to 

basal-like. Labels marked as I refer to inconsistent assignments; situations where the classifiers did not 

achieve the majority on attributing a subtype label. 

 

The Average Sensitivity statistic was used to characterise the average proportion of 

accurately labelled samples in each subtype. Considering the analysis with CM1 list, the 

measure was 0.76 ± 0.06 in the METABRIC discovery set and 0.64 ± 0.04 in the validation set; 

and with PAM50 list was 0.78 ± 0.07 and 0.65 ± 0.05, respectively. Likewise, the average 

sensitivity calculated for the ROCK test set was 0.67 ± 0.08 using the CM1 and 0.69 ± 0.08 with 

PAM50 list. A complete table containing the performance of all individual classification 

methods is available in the (Supporting Information – Table 4.10 The performance of the 

classifiers using the CM1 list 

Table describing the performance of each classifier on the METABRIC discovery and 

validation sets, and ROCK test set using the CM1 list is summarised below (Table 4.10s). The 

original published file shows the percentage of correctly, incorrectly and not classified samples, 

Fleiss Kappa index, Cramer’s V, Average Sensitivity, and other values for classification. The 24 

classifiers from the Weka software suite are also listed. In addition, it contains the labels 

predicted by each classifier. Count of predicted labels was obtained with the consensus of the 

majority of classifiers. 

Available online: doi:10.1371/journal.pone.0129711.s004 

 

Supporting Information – Table 4.11 

Table 4.11 The performance of the classifiers using the PAM50 list 

Table describing the performance of each classifier on the METABRIC discovery and 

validation sets, and ROCK test set using the PAM50 list is summarised below (Table 4.11s). 
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The original published file shows the percentage of correctly, incorrectly and not classified 

samples, Fleiss Kappa index, Cramer’s V, Average Sensitivity, and other values for 

classification. The 24 classifiers from the Weka software suite are also listed. In addition, it 

contains the labels predicted by each classifier. Count of predicted labels was obtained with the 

consensus of the majority of classifiers. 

Available online: doi:10.1371/journal.pone.0129711.s005 

Table 4.10 and Table 4.11).  

The levels of agreement explained by interrater reliability metric Fleiss' kappa.  

Fleiss' kappa was computed to assess the reliability of agreement between two raters, as 

displayed in Table 4.7. We initially compared the agreement Among classifiers which indicates 

the overall performance of classifiers alone. We then compared Predicted vs Original, that is, 

the agreement between subtypes assigned by the majority of classifiers using CM1 and PAM50 

lists compared to the original PAM50 labels in the METABRIC discovery and validation sets, 

and ROCK test set. We also calculated the kappa between labels attributed by the majority of 

classifiers using both lists, CM1 vs PAM50. We refer to the Materials and Methods section for 

an interpretation of κ values. For instance, the high levels of agreement between two raters 

reflect more than what would be expected by chance.  

Considering the agreement of the ensemble of classifiers, there was a substantial 

agreement in both METABRIC discovery and validation sets, and ROCK test set (Table 4.7). 

Fleiss' kappa was 0.73, 0.75 and 0.63 with the CM1 list for METABRIC discovery, validation 

and ROCK data sets, respectively. Values obtained with the PAM50 list were 0.72, 0.73 and 

0.59, respectively. By comparing the subtypes predicted by the majority of classifiers and 

original PAM50 labels, there was an almost perfect agreement with CM1 (κ = 0.81) and 

PAM50 (κ = 0.84) lists in the discovery set. In the validation and ROCK sets, on the other hand, 

labels showed only a moderate agreement for both lists (κ ~ 0.6). Strikingly, the Fleiss' kappa 

between subtypes predicted using the CM1 and PAM50 lists (κ = 0.86, 0.83, and 0.80 in the 

METABRIC discovery, validation, and ROCK sets, respectively) revealed an almost perfect 

agreement. This statistical measure confirms our visual analysis of the contingency tables as 

they find strong relationship across the subtype labels in each data set. A detail of the agreement 

among classifiers by intrinsic subtype is shown in (Supporting Information – Table 4.12). 

 

 

Table 4.7 Agreement of the 24 classifiers on assigning labels using Fleiss' kappa statistic 

 METABRIC ROCK 
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 Discovery Validation Test set 

Among classifiers CM1 0.73 0.75 0.63 

 PAM50 0.72 0.73 0.59 

Predicted vs. Original CM1 0.81 0.60 0.59 

 PAM50 0.84 0.62 0.64 

CM1 vs. PAM50 0.86 0.83 0.80 

Note: Rows entitled Among classifiers indicate agreement of classifiers. Predicted vs. Original shows the 

agreement between the mostly predicted and initial labels. Finally, the rows CM1 vs. PAM50 contain the 

agreement between predicted labels using the CM1 and PAM50 lists. 

The agreement according to the Adjusted Rand Index 

The agreement between the different sample labelling was also scrutinised using the 

Adjusted Rand Index measure (Table 4.8). The values obtained with the CM1 list were 0.76 in 

the METABRIC discovery and 0.43 in the validation sets, and 0.45 in the ROCK test set. For 

PAM50 list, the values were 0.79, 0.46 and 0.51, respectively. Similar to Fleiss'  kappa, the 

agreement between labels predicted with CM1 and PAM50 lists is higher than the agreement 

with the original labels. The Adjusted Rand Index values were 0.82, 0.79 and 0.64 for the three 

data sets, respectively. The numbers obtained with this measure also revealed remarkable 

concordance of CM1 and PAM50 lists assigned labels. 

 

 

Table 4.8 Agreement measured by the Adjusted Rand Index between different labelling 

 METABRIC   ROCK 

 Discovery validation test set 

CM1  0.76  0.43  0.45 

PAM50  0.79  0.46  0.51 

CM1-PAM50  0.82  0.79  0.64 

Note: This table contains the agreement between the original and predicted labels of samples in the 

discovery and validation sets. CM1-METABRIC refers to agreement between the labels predicted by the 

majority of classifiers trained with the CM1 list and the original METABRIC labels; PAM50-METABRIC 

is the agreement between labels predicted by the majority of classifiers trained with the PAM50 list and 

original METABRIC labels; and CM1-PAM50 is the agreement between predicted labels using both lists. 

 

 

4.3.4 The Use of an Ensemble Learning with the CM1 List Improves the 

Subtype Distribution in the METABRIC and ROCK Data Sets  

The number of samples in each original PAM50 subtype is markedly different across 

the METABRIC sets (Figure 4.5). In the discovery set, there is a clear abundance of luminal A 
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and B subtypes, precisely 73.62% of all samples. In contrast, the proportion of luminals in the 

validation set is only 48.14%. The ratio of luminal A to luminal B samples changed from 1.74 

in the discovery to 1.14 in the validation set. However, when the CM1 or PAM50 lists are used 

in conjunction with the ensemble of classifiers, samples in the discovery and validation sets are 

more homogeneously distributed. The percentage of samples in the discovery set labelled as 

luminal A and B using CM1 and PAM50 lists are 73.53% and 73.72%, respectively. These 

proportions match the original number (73.62%). On the other hand, in the validation set the 

CM1 and PAM50 lists assigned a total of 64% and 63.19% luminal samples, against the 48.14% 

previously mentioned. The distribution of subtypes also becomes more similar to the discovery 

set. Likewise, ROCK test set also changed the pattern of class distribution after the performance 

of the ensemble of classifiers. The differences in class distributions might not be attributed to 

the randomisation procedure used by the studies as the performance of the ensemble of 

classifiers with both lists reconcile the distribution of subtypes.  

 

 

 

 

 

Figure 4.5 Class distribution in the METABRIC discovery and validation, and ROCK set 
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The bars represent the number of samples in each breast cancer subtype: luminal A (yellow), 

luminal B (green), HER2-enriched (purple), normal-like (blue) and basal-like- (red). In the first 

row, the labels refer to the original assignment using the PAM50 method. The following rows 

show the new labels attributed using an ensemble of 24 classifiers with PAM50 and CM1 lists, 

respectively. Samples were classified as inconsistent (black) if there was no consensus between 

the majorities of classifiers as to what should be the correct subtype. 

 

 

 

We summarise the similarities and differences in subtypes distribution (graphically 

displayed in Figure 4.5) by computing the square root of the Jensen-Shannon divergence 

(Berretta & Moscato, 2010). This is a true metric of distance between probability distributions. 

Its plot in Figure 4.6 shows the similarity between all possible pairs of data sets based on their 

distribution of subtype labels (Supporting Information – Figure 4.9). It can be observed that 

the original labels are the most divergent ones, especially in the METABRIC validation and 

ROCK test sets. The high similarity of samples distribution among subtypes based on the 

assignments with CM1 or PAM50 lists is evident. Such similarity was not expected for the 

ROCK set as the ensemble of classifiers was trained with METABRIC discovery (Illumina 

platform data) and tested in the ROCK set (Affymetrix platform data). The limited number of 

probes matching Illumina and Affymetrix in both lists (as described in Materials and Methods) 

seems not to affect the performance of the ensemble learning. Yet the divergences in the 

original class distributions might not be attributed to the randomisation procedure used by the 

consortium. These results point out to the relative strength and robustness of a set of classifiers 

compared to single methods to predict breast cancer subtype labels. They also indicate that there 

is an issue to be considered by researchers when using the original PAM50 labels from the 

METABRIC study for analysing data and building predictive models. 
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Figure 4.6 Similarity between subtypes distribution in the METABRIC discovery and 

validation sets, and in the ROCK set 

The image shows the similarity between the subtypes distribution for METABRIC discovery 

(MD) and validation (MD) sets, and ROCK test set (RS). The similarity is measured using the 

square root of the Jensen-Shannon divergence. Darker shades represent more similar 

distributions, while lighter shades refer to divergent patterns. The diagonal shows the darkest 

colour as each data set is the closest to itself. According to this image, labels assigned using 

ensemble learning with CM1 and PAM50 lists are highly similar, and both exhibit lower levels 

of agreement with the original labels assigned using the PAM50 method. 

 

 

 

4.3.5 Breast Cancer Intrinsic Subtypes Defined by Clinical Markers and 

Survival Curves  

Given the heterogeneity among breast cancer patients and the intricate assignment of 

PAM50 labels in the original METABRIC data set, we further investigated whether significant 
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differences exist in the analysis of current clinical markers (ER, PR and HER2). Figure 4.7, 

Figure 4.8 and Figure 4.9 show, respectively, the distribution of the ER, PR and HER2 across 

intrinsic subtypes in the METABRIC discovery and validation sets, considering the original 

PAM50 labels and the labels assigned by ensemble of classifiers using CM1 and PAM50 lists. 

The new subtype labelling markedly improves the status of the clinical markers in the 

METABRIC data set. For instance, the ER marker distribution across subtypes shows an 

important decrease in the number of HER2-enriched and basal-like samples that are ER-positive 

according to the original PAM50 labels. The PR marker, likewise, varies the distribution when 

predicted labels based on the ensemble of classifiers using either CM1 and PAM50 list are 

compared with the original labels. HER2 amplification has a particular behaviour across all 

subtypes. Under the new subtype labels, the distribution of the three clinical markers becomes 

more consistent with what is expected according to the literature for each class: luminal A (ER+ 

and/or PR+, HER2-); luminal B (ER+ and/or PR+, HER2±); HER2-enriched (ER-, PR- and 

HER2+); and basal-like (ER-, PR-, HER2-) (de Kruijf et al., 2014).  

Subsequently, we illustrate the survival curves for all breast cancer subtypes using Cox 

proportional hazards model, as described in Materials and Methods. The curves were plotted 

based on the original PAM50 labels and those assigned by the majority of classifiers. For 

generating the survival curves, we included the most relevant clinical variables as covariates: 

grade, size, age at diagnosis, number of lymph nodes positive, and ER status 

(immunohistochemistry) (Curtis et al., 2012). This analysis revealed different curves in the 

METABRIC discovery and validation sets (Figure 4.10). For instance, luminal B and basal-like 

subtypes show a similar pattern across data sets. Luminal A, HER2-enriched and normal-like, 

on the other hand, have a more consistent survival pattern when the CM1 and PAM50 lists are 

used in conjunction with the ensemble learning. Taken as a whole, the results of this section 

support the increased robustness of labels assigned by the ensemble of classifiers with the CM1 

or PAM50 lists, and point out to inconsistencies in the original subtype assignment in the 

METABRIC study. 
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Figure 4.7 ER marker distribution across subtypes in the METABRIC data sets 

(A) Discovery and (B) Validation. The bars represent the number of samples with ER positive 

and negative in the five intrinsic subtypes, based on the patients' clinical information. The top 

row is based on the original subtype labels obtained with the PAM50 list and a single classifier 

(PAM). Middle and bottom rows are based on the labels obtained by Ensemble Learning using 

the PAM50 and CM1 lists, respectively. 
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Figure 4.8 PR marker distribution across subtypes in the METABRIC data sets 

(A) Discovery and (B) Validation. The bars represent the number of samples with PR positive 

and negative distributed in the five intrinsic subtypes, based on the patients' clinical information. 

The top row is based on the original subtype labels obtained with the PAM50 list and a single 

classifier (PAM). Middle and bottom rows are based on the labels obtained by Ensemble 

Learning using the PAM50 and CM1 lists, respectively. 
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Figure 4.9 HER2 distribution across subtypes in the METABRIC data sets 

Discovery and (B) Validation. The bars represent the number of samples with HER2 

amplification (positive or negative) for each intrinsic subtype based on the patients' clinical 

information. The top row is based on the original subtype labels obtained with the PAM50 list 

and a single classifier (PAM). Middle and bottom rows are based on the labels obtained by 

Ensemble Learning using the PAM50 and CM1 lists, respectively. 
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Figure 4.10 The survival curves for METABRIC discovery and validation sets 

The survival curves for each breast cancer subtype are generated using Cox proportional 

hazards model based on the grade and size of the tumour, patient's age, number of lymph nodes 

positive and ER status. Each curve represents the survival probability at a certain time after the 

diagnosis. Ticks on the curve correspond to the observations of patients who are still alive, 

while drops indicate the death. The probability curves based on the last 10 observations are 

plotted in dash.  
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4.4 Discussion 

 

In this study, we exposed the power of the CM1 list for improving the breast cancer subtype 

prediction in the METABRIC and ROCK data sets. The CM1 score portrayed 30 novel genes as 

potential biomarkers, along with 12 well-established markers shared between CM1 and PAM50 

lists. The 42 biomarkers have a great potential to differentiate breast cancer intrinsic subtypes. 

Among them, AGR3, HPN, ANKRD30A, AURKB, PROM1, VTCN1, CRYAB, CDK1, CDKN3, 

SERPINA3, SOX11, TRPV6, CLCA2, MUCL1, COL11A1, DARC, TFF3, IGF2BP3, IL33, 

SUSD3, PSAT1, and GABRP are reported in different studies associated with breast cancer; 

however not in the context of subtype differentiation. Noteworthy, the CM1 list revealed a set of 

probes for which little literature exists in relation to breast cancer subtypes: CDCA5, CCL15, 

COL17A1, GLYATL2, ROPN1, LINC00993 and C6orf211. Their expression levels vary across 

different subtypes, and are yet a new avenue to be explored. We also emphasise the 12 common 

genes (CEP55, ESR1, FOXA1, FOXC1, KRT17, MAPT, MELK, MMP11, NAT1, SFRP1, 

UBE2C, and UBE2T) due to their important role for breast cancer disease and intrinsic 

subtyping.  

Within the application of an ensemble of classifiers, CM1 and PAM50 lists showed 

concordant predictive power for disease subtyping. In fact, there was an almost perfect 

agreement between the labelling obtained with the majority of classifiers using both lists; 

however different from the original labels. In this study, we want to highlight the weakness of 

relying in a single method to assign subtypes labels, as opposed to the power and robustness of 

ensemble learning. We therefore discourage label assignments based on a single classifier and 

also suggest a thorough review of those intrinsic subtypes given the importance of such data sets 

to breast cancer research. The results indicate that there is an issue to be considered by 

researchers when using the original PAM50 labels for analysing data. The use of incorrect 

labels would lead to a plethora of misguided and misleading results by other investigators that 

use METABRIC or ROCK data sets.  

In spite of luminals sharing the same origin and large molecular commonalities 

(Nguyen et al., 2008; Polyak, 2011), the ensemble of classifiers accurately predicted luminal 

samples in the METABRIC data set, and showed some ambiguity on assigning the subtype A or 

B for a small number of samples, especially in the ROCK data set. This may be a consequence 

of the reduced number of probes matching across Illumina and Affymetrix platforms. HER2-

enriched notably improved label consistency in the ROCK data. Furthermore, the normal-like 
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tumours received more often contradictory and inaccurate subtype labelling among both data 

sets. The poor overall outcome for this subtype is supported by the discussion that normal-like 

is an artefact of sample processing with high contamination of normal breast tissue (Parker et 

al., 2009; Peppercorn et al., 2008; Weigelt; Baehner; et al., 2010); however, still crucial to be 

elucidated. Ultimately, the basal-like subtype maintained the classification with a unique 

profile, markedly divergent from other subtypes (Haibe-Kains et al., 2012; Mackay et al., 2011; 

Weigelt; Mackay; et al., 2010); even though this group has recently been partitioned into new 

fundamental classes (Herschkowitz et al., 2007; Prat et al., 2010).  

 

 

4.5 Conclusion 

 

Overall, the new intrinsic subtype labels based on the CM1 list and ensemble learning revealed 

more accurate distributions of clinical markers (ER, PR and HER2) and survival curves, when 

compared to the original PAM50 labels in the METABRIC cohort and ROCK test set. 

Interestingly, the CM1 list shows ESR1 (ER) among the 42 probes, but brings other independent 

genes that are also relevant for overall predictions. Robust data sets like METABRIC have 

contributed to the understanding of breast cancer disease in terms of its molecular complexity 

and intrinsic alterations. The main limitation of the research in the field, nevertheless, is the 

uncertainty in the exact classification of intrinsic subtypes; over and above the discovery of 

molecular signatures and standard clinical biomarkers. Under consideration, a consistent 

taxonomy needs yet to be established prior to implementation in clinical practice. Additional 

research involving the genome, transcriptome, proteome, and epigenome, will lastly portray a 

true landscape of subtypes and contribute to breast cancer management. 
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4.7 Supporting Information 

 

Supporting Information – Table 4.9 

Table 4.9 The CM1 score calculated for each breast cancer subtype 

Table listing the CM1 score used to rank the set of 48803 probes for each of the five breast 

cancer subtypes in the METABRIC discovery data set. In each case, we selected the top 10 

highly discriminative probes (5 with the greatest positive CM1 score values – indicating up-

regulated probes, and 5 with the smallest negative values – down-regulated).  

Available online: doi:10.1371/journal.pone.0129711.s003 

 

 

Supporting Information – Table 4.10 The performance of the classifiers using the CM1 list 

Table describing the performance of each classifier on the METABRIC discovery and 

validation sets, and ROCK test set using the CM1 list is summarised below (Table 4.10s). The 

original published file shows the percentage of correctly, incorrectly and not classified samples, 

Fleiss Kappa index, Cramer’s V, Average Sensitivity, and other values for classification. The 24 

classifiers from the Weka software suite are also listed. In addition, it contains the labels 

predicted by each classifier. Count of predicted labels was obtained with the consensus of the 

majority of classifiers. 

Available online: doi:10.1371/journal.pone.0129711.s004 

 

Supporting Information – Table 4.11 

Table 4.11 The performance of the classifiers using the PAM50 list 

Table describing the performance of each classifier on the METABRIC discovery and 

validation sets, and ROCK test set using the PAM50 list is summarised below (Table 4.11s). 

The original published file shows the percentage of correctly, incorrectly and not classified 

samples, Fleiss Kappa index, Cramer’s V, Average Sensitivity, and other values for 

classification. The 24 classifiers from the Weka software suite are also listed. In addition, it 

contains the labels predicted by each classifier. Count of predicted labels was obtained with the 

consensus of the majority of classifiers. 

Available online: doi:10.1371/journal.pone.0129711.s005 

Table 4.10 
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Table 4.10 The performance of the classifiers using the CM1 list 

Table describing the performance of each classifier on the METABRIC discovery and 

validation sets, and ROCK test set using the CM1 list is summarised below (Table 4.10s). The 

original published file shows the percentage of correctly, incorrectly and not classified samples, 

Fleiss Kappa index, Cramer’s V, Average Sensitivity, and other values for classification. The 24 

classifiers from the Weka software suite are also listed. In addition, it contains the labels 

predicted by each classifier. Count of predicted labels was obtained with the consensus of the 

majority of classifiers. 

Available online: doi:10.1371/journal.pone.0129711.s004 

 

Supporting Information – Table 4.11 

Table 4.11 The performance of the classifiers using the PAM50 list 

Table describing the performance of each classifier on the METABRIC discovery and 

validation sets, and ROCK test set using the PAM50 list is summarised below (Table 4.11s). 

The original published file shows the percentage of correctly, incorrectly and not classified 

samples, Fleiss Kappa index, Cramer’s V, Average Sensitivity, and other values for 

classification. The 24 classifiers from the Weka software suite are also listed. In addition, it 

contains the labels predicted by each classifier. Count of predicted labels was obtained with the 

consensus of the majority of classifiers. 

Available online: doi:10.1371/journal.pone.0129711.s005 

Table 4.10 Summary performance of the classifiers using the CM1 list 

   Cramer’s V  

Classifiers Type 
METABRIC 

Discovery 

METABRIC 

Validation 

ROCK 

Validation 

Bayes 

BayesNet 0.77 0.68 0.65 

NaiveBayes 0.78 0.69 0.65 

NaiveBayesUpdateable 0.77 0.69 0.65 

Functions 

Logistic 0.71 0.65 0.62 

MultilayerPerceptron 0.78 0.66 0.58 

SimpleLogistic 0.81 0.66 0.59 

SMO 0.80 0.66 0.62 

Lazy 
IBk 0.68 0.62 0.58 

KStar 0.67 0.57 0.43 

Meta 
AttributeSelectedClassifier 0.69 0.62 0.56 

Bagging 0.75 0.63 0.55 
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ClassificationViaRegression 0.76 0.65 0.54 

LogitBoost 0.75 0.63 0.56 

MultiClassClassifier 0.72 0.63 0.58 

RandomCommittee 0.75 0.63 0.59 

Rules 

DecisionTable 0.59 0.56 0.52 

JRip 0.66 0.60 0.48 

PART 0.73 0.60 0.58 

Trees 

HoeffdingTree 0.78 0.69 0.65 

J48 0.70 0.61 0.56 

LMT 0.81 0.66 0.59 

RandomForest 0.75 0.61 0.57 

RandomTree 0.63 0.58 0.44 

REPTree 0.70 0.63 NA 
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Table 4.11 Summary performance of the classifiers using the PAM50 list 

   Cramer’s V  

Classifiers Type 
METABRIC 

Discovery 

METABRIC 

Validation 
ROCK 

bayes BayesNet 0.78 0.69 0.67 

 
NaiveBayes 0.79 0.69 0.62 

 
NaiveBayesUpdateable 0.79 0.69 0.62 

functions Logistic 0.74 0.67 0.57 

 
MultilayerPerceptron 0.85 0.70 0.64 

 
SimpleLogistic 0.85 0.69 0.62 

 
SMO 0.85 0.68 0.64 

lazy IBk 0.73 0.66 0.62 

 
KStar 0.68 0.58 0.50 

meta AttributeSelectedClassifier 0.70 0.62 0.58 

 
Bagging 0.75 0.63 0.59 

 
ClassificationViaRegression 0.79 0.64 0.53 

 
LogitBoost 0.78 0.65 0.58 

 
MultiClassClassifier 0.75 0.61 0.58 

 
RandomCommittee 0.78 0.62 0.59 

rules DecisionTable 0.61 0.55 0.47 

 
JRip 0.68 0.64 0.51 

 
PART 0.70 0.62 0.52 

trees HoeffdingTree 0.78 0.69 0.63 

 
J48 0.74 0.61 0.55 

 
LMT 0.84 0.69 0.62 

 
RandomForest 0.77 0.62 0.58 

 
RandomTree 0.66 0.58 0.48 

 
REPTree 0.69 0.61 0.57 
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Supporting Information – Table 4.12 

Table 4.12 The agreement between sample labelling with Fleiss’ Kappa measure and the 

Jensen-Shannon divergence of two probability distributions 

 

METABRIC Discovery 

  

Classifiers 

CM1 

Classifiers 

PAM50 

Majority 

CM1 

Majority 

PAM50 

CM1 

PAM50 

Luminal A 0.73 0.73 0.87 0.89 0.92 

Luminal B 0.74 0.73 0.88 0.88 0.91 

Her2 0.70 0.68 0.80 0.89 0.97 

Normal 0.49 0.48 0.70 0.82 0.90 

Basal 0.86 0.85 0.93 0.95 0.98 

Overall 0.73 0.72 0.81 0.84 0.86 

 

METABRIC Validation 

  

Classifiers 

CM1 

Classifiers 

PAM50 

Majority 

CM1 

Majority 

PAM50 

CM1 

PAM50 

Luminal A 0.76 0.74 0.60 0.62 0.92 

Luminal B 0.75 0.72 0.65 0.69 0.89 

Her2 0.70 0.66 0.55 0.62 0.93 

Normal 0.64 0.59 0.48 0.48 0.91 

Basal 0.85 0.86 0.80 0.84 0.99 

Overall 0.75 0.73 0.60 0.62 0.83 

 

ROCK test set 

  

Classifiers 

CM1 

Classifiers 

PAM50 

Majority 

CM1 

Majority 

PAM50 

CM1 

PAM50 

Luminal A 0.60 0.58 0.63 0.70 0.78 

Luminal B 0.62 0.63 0.68 0.73 0.76 

Her2 0.58 0.44 0.16 0.24 0.82 

Normal 0.40 0.37 0.31 0.38 0.77 

Basal 0.81 0.79 0.79 0.76 0.92 

Overall 0.63 0.59 0.59 0.64 0.80 

Note: Table containing the Fleiss’ Kappa agreement of labels for the METABRIC 

discovery and validation sets, and ROCK test set. It shows the overall agreement (average 

values) Among classifiers using CM1 and PAM50 lists, as well as the agreement for each 

subtype. The predicted—original are described in the table and contain the agreement 

between the mostly predicted and initial labels of samples; whereas the CM1—

PAM50 show agreement between labels assigned by the majority of classifiers using CM1 

and PAM50 lists. 
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Supporting Information –Table 4.13 

Table 4.13 The Jensen-Shannon divergence of two probability distributions 
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Note: The file also has the Jensen-Shannon divergence between two 

probability distributions. Numbers represent the similarity between 

subtypes’ distribution for METABRIC discovery and validation sets, and 

ROCK test set. The similarity is measured using the square root of the 

Jensen-Shannon divergence. 
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Supporting Information – Figure 4.11 

Figure 4.11 The mRNA log2 normalised expression values of 42 probes (A and B) in the 

CM1 list across the five intrinsic subtypes in the METABRIC discovery and validation, 

and ROCK 

 

A 
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Supporting Information – Text 4.1 

Text 4.1. CM1 list and literature review 

The document shows the CM1 probe list along with an extensive literature review. The 42 CM1 

biomarkers revealed a great potential to differentiate breast cancer intrinsic subtypes in the 

METABRIC and ROCK data sets. The 30 novel markers and 12 well-established genes vary the 

expression levels across different subtypes. The vast majority has been associated with breast 

cancer disease, either included or not in the subtyping context. 

 

Illumina Probe  / 

Gene Symbol 
Gene and Protein Review 

ILMN_1684217 

AURKB 

Aurora kinase B (AURKB; also known as Aik2, AIK2, AIM1, AIM-1, ARK2, ARK-2, AurB, aurkb-sv1, aurkb-

sv2, Aurora/IPL1-related kinase 2, Aurora-and IPL1-like midbody-associated protein 1, Aurora kinase B, 

Aurora-related kinase 2, IPL1, Serine/threonine-protein kinase 12, Serine/threonine-protein kinase aurora-B, 

STK-1, STK12, STK5) encodes a protein member of the aurora kinase subfamily of serine/threonine kinases 

that function as a regulator of the centrosome cycle and mitotic spindle assembly. The protein AURKB and 

interacting proteins play an important role in chromosome condensation, segregation and cytokinesis and, 

consequently, in ploidy maintenance during cell division. Mitotic deregulations may contribute significantly 

to cell division errors and development of aggressive tumour cells (Ciriello et al., 2013; Hegyi et al., 2012). 

AURKB signalling was also linked to breast cancer and associated to poor prognosis (Ahn et al., 2013). This 

gene has been a target of inactivation via different studies and mechanisms (Arbitrario et al., 2010; Bush et 

al., 2013; Fiskus et al., 2012; Gully et al., 2010; Hardwicke et al., 2009; Kalous et al., 2013; Romanelli et al., 

2012; Sanchez-Bailon et al., 2012; Soncini et al., 2006; T. Ueki et al., 2008). 

ILMN_1683450 

CDCA5 

Cell division cycle associated 5 (CDCA5; also known as Cell division cycle-associated protein 5, 

MGC16386, p35, Sororin, SORORIN) is important for sister chromatid cohesion during mitosis, stabilizing 

proper chromatin association during G2 phase. The protein is also needed for efficient repair of DNA double-

strand breaks and for stable presence of normal amounts of chromatin-bound cohesin population (Mertsch et 

al., 2008; W. Zhang et al., 2010). Carretero et al (Carretero et al., 2013) reported that “the reduced 

accumulation of AURKB at the inner centromere in cells that lack PDS5B impairs its error correction 

function, promoting chromosome mis-segregation and aneuploidy”. Although systematic studies showed the 

up-regulation of this gene in a great majority of lung cancers, its involvement in breast cancer disease 

requires further investigation. The protein CDCA5 confers a potential diagnostic molecule and therapeutic 

target for promising strategies in new drug development (Nguyen et al., 2010). 

ILMN_1747016 

CEP55 

Centrosomal protein 55kDa (CEP55; also known as C10orf3, Centrosomal protein of 55 kDa, Cep55, CT111, 

FLJ10540, Up-regulated in colon cancer 6, URCC6) encodes a mitotic phosphoprotein that acts in mitotic 

exit and cytokinesis. Both down- and up-regulation of CEP55 causes a cytokinesis defect (Murphy et al., 

2010). The gene expression variance, nonetheless, is not affected by hormone receptors such as oestrogen and 

progesterone or expression patterns of ERBB2. The centrosomal protein is detected in a wide variety of 

tumour cell lines and is considered as a novel breast tumour-associated antigen (Inoda et al., 2009). It was 

also reported that CEP55 have genomic alternation in a comparison of pre-invasive ductal carcinoma in situ 

(DCIS) to invasive ductal carcinoma (IDC) by Colak et al. (Colak et al., 2013) and it was predictive of 

prognosis in ER-positive patients (Martin et al., 2008). 
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Illumina Probe  / 

Gene Symbol 
Gene and Protein Review 

ILMN_2212909 

MELK 

The maternal embryonic leucine zipper kinase (MELK; also known as hMELK, hPK38, HPK38, KIAA0175, 

Maternal embryonic leucine zipper kinase, Protein kinase PK38) acts as a regulator of various processes such 

as cell cycle control, self-renewal of stem cells, apoptosis, and splicing regulation. The encoded protein 

physically interacts, phosphorylates and inhibits BCL2L14, repressing a pro-apoptotic member of the Bcl-2 

family. The protein also mediates phosphorylation of CDC25B, regulating the entry into mitosis. In addition, 

MELK inhibits the spliceosome assembly during mitosis by phosphorylating ZNF622 and contributes to 

induce other apoptosis signalling regulation. The protein kinase is a promising molecular target for the 

treatment of breast cancer (Lin et al., 2007) as the up-regulation is linked to poor prognosis (Agnati et al., 

2007; Canevari et al., 2013; Hebbard et al., 2010; Mahasenan & Li, 2012; Pickard et al., 2009). Finally, it has 

been suggested that paclitaxel may attenuate the expression of MELK (Warsow et al., 2013). 

ILMN_1714730 

UBE2C 

Ubiquitin-conjugating enzyme E2C (UBE2C; also known as dJ447F3.2, UbcH10, UBCH10, Ubiquitin 

carrier protein C, Ubiquitin-conjugating enzyme E2 C, Ubiquitin-protein ligase C) encodes a member of the 

E2 ubiquitin-conjugating enzyme family. The ubiquitin modification in proteins is an important cellular 

mechanism of homoeostasis and fate (Loussouarn et al., 2009). UBE2C is required for cell cycle progression 

and checkpoint control through targeted degradation of short-lived proteins, the mitotic cyclins. Aberrations 

in this pathway is implicated in cancer progression and, importantly, in the pathogenesis of breast cancer 

(Psyrri et al., 2012; Rawat et al., 2013). The UBE2C up-regulation is also normally linked to high tumour 

grade and poor prognosis (Parris et al., 2014; Taylor et al., 2010). 

ILMN_1796059 

ANKRD30A 

Ankyrin repeat domain 30A (ANKRD30A; also known as Ankyrin repeat domain-containing protein 30A, 

NY-BR-1, Serologically defined breast cancer antigen NY-BR-1) is an antigen expressed in mammary glands, 

primary and metastatic breast carcinomas (Jäger et al., 2007; Varga et al., 2006; Woodard et al., 2011). 

Interestingly, ANKRD30A is almost expressed exclusively in breast epithelium; with exception of testis and 

sweat gland tumours. Despite the insufficient knowledge about the biology and function of the gene, the 

tissue specificity may be useful for the diagnosis of breast carcinomas (Balafoutas et al., 2013; Giger et al., 

2010; Jäger et al., 2007; Seil et al., 2007); and a potential target for treatment (immunotherapy) (J.-P. 

Theurillat et al., 2007; J. P. Theurillat et al., 2008). 

ILMN_1651329 

LINC00993 

The long intergenic non-protein coding RNA 993 (LINC00993) matches a region in the chromosome 10 very 

close to ANKRD30A; and contains a SNP (rs77587276) variant. The region requires further investigation as it 

covers relevant probes associated with breast cancer disease; markedly, up-regulated in luminal subtype. 

ILMN_2310814 

MAPT 

The microtubule-associated protein tau (MAPT; also known as DDPAC, FLJ31424, FTDP-17, MAPTL, 

MGC138549, Microtubule-associated protein tau, MSTD, MTBT1, MTBT2, Neurofibrillary tangle protein, 

Paired helical filament-tau, PHF-tau, PPND, tau, TAU) undergoes alternative splicing, originating several 

mRNA transcripts. The isoforms differ by having variant conserved repeat motifs in the microtubule-binding 

domain, and insertions in the N-terminal projection domain. Although the function of each isoform is 

unknown, the protein binds to both the outer and inner surfaces of microtubules, organizing the tubulin 

assembly and microtubule stabilisation (Ikeda et al., 2010). In breast cancer, MAPT expression is high in ER-

positive low grade compared to ER-negative high grade tumours (Valet et al., 2013). Additionally, the gene 

up-regulation is correlated with favourable prognosis (Kotoula et al., 2013) and, at the same time, associated 

with resistance to taxanes, paclitaxel and docetaxel (Fountzilas et al., 2013; Ikeda et al., 2010; Mihály et al., 

2013; Spicakova et al., 2010; Tanaka et al., 2009; K. Wang et al., 2013). 
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Illumina Probe  / 

Gene Symbol 
Gene and Protein Review 

ILMN_1728787 

AGR3 

The anterior gradient 3 (AGR3; also known as AG3, AG-3, Anterior gradient protein 3 homolog, BCMP11, 

Breast cancer membrane protein 11, HAG3, hAG-3, PDIA18, UNQ642/PRO1272) functionality has been 

defined in breast cancer cells as involved in hormone responsiveness, cell adhesion, migration, and 

metastasis. This gene encodes a membrane protein with a potential role in tumorigenesis by interacting with 

metastasis-associated genes (Fletcher et al., 2003; Persson et al., 2005). 

ILMN_1688071 

NAT1 

The enzyme encoded by N-acetyltransferase 1 (NAT1; also known as AAC1, Arylamide acetylase 1, 

Arylamine N-acetyltransferase 1, MNAT, Monomorphic arylamine N-acetyltransferase, N-acetyltransferase 

type 1, NAT-1, NATI) acts metabolizing drugs and other xenobiotics, and functions in folate catabolism (S. J. 

Kim; Kang; et al., 2008; Sim et al., 2008). Kim et al. (2008) reported the hypomethylation of the NAT1 

promoter region resulting in aberrant mRNA expression levels, with overexpression of the gene in breast 

carcinomas. Likewise, new insights into the associations of SNPs in the coding and control regions of NAT1 

have been described and suggested as a potential susceptibility biomarker for the disease (Sim et al., 2008). 

ILMN_1729216 

CRYAB 

Crystallin, alpha B (CRYAB; also known as Alpha(B)-crystallin, Alpha-crystallin B chain, CRYA2, CTPP2, 

Heat shock protein beta-5, HspB5, HSPB5, Renal carcinoma antigen NY-REN-27, Rosenthal fiber 

component) is a member of the small heat shock protein (sHSP; also known as the HSP20) family, all of 

which share a common C terminal motif – the alpha crystallin domain. The protein CRYAB acts as molecular 

chaperones induced by ubiquitous stress and up-regulated by heat, radiation, oxidative stress and anticancer 

drugs. Other additional functions of alpha crystallins are the autokinase activity, participation in the 

intracellular architecture, and the control of large soluble protein aggregates. Additionally, CRYAB shows 

redundancy in interacting with various apoptosis pathways at multiple levels (Kabbage et al., 2012); besides 

plays a critical role in vasculature homeostasis and angiogenesis (Ruan et al., 2011). The protein is expressed 

widely in many tissues and organs (Campbell-Lloyd et al., 2013). In breast cancer, CRYAB is usually high 

differentially expressed in invasive tumours when compared to normal breast tissue specimens (Kabbage et 

al., 2012) and might be involved in chemotherapy response (Cortesi et al., 2009). 

ILMN_1666845 

KRT17 

The protein encoded by keratin 17 (KRT17; also known as 39.1, CK-17, Cytokeratin-17, K17, Keratin, type I 

cytoskeletal 17, Keratin-17, PC, PC2, PCHC1) plays a role in the formation and maintenance of various 

epidermal appendages, as the nail bed, hair follicle, and sebaceous glands. KRT17 regulates other protein 

synthesis and epithelial cell growth. In addition, the protein is a marker of basal cell differentiation as an 

attribute of a certain type of "stem cells". In the context, immunohistochemical studies revealed that basal-

like breast tumours present KRT17 up-regulation, with levels associated with a poor clinical outcome (Van 

De Rijn et al., 2002). This gene is also up-regulated in primary BRCA1 mutant breast tumours; fact consistent 

with the reported connection between BRCA1 mutation and basal-like subtypes (Gorski et al., 2010). 

ILMN_1786720 

PROM1* 

Prominin 1 (PROM1; also known as AC133, Antigen AC133, CD133, CORD12, MCDR2, MSTP061, 

Prominin-1, Prominin-like protein 1, PROML1, RP41, STGD4) encodes a transmembrane glycoprotein, often 

expressed on adult stem cells. The protein plays an essential role in maintaining stem cell properties by 

suppressing differentiation. Aberrant expression PROM1 is also associated with several types of cancer. In 

breast cancer, PROM1 overexpression is positively related to tumour size, stage, and lymph node metastasis 

in invasive tumours (Q. Liu et al., 2009). Moreover, there is an important association with p53 mutation, 

mammary cell dedifferentiation, and the concomitant acquisition of stemlike properties (Coradini et al., 

2012). In particular, basal-like subtype shows high p53 mutation and PROM1 up-regulation, which improve 

tumour cells aggressiveness (Bertheau et al., 2007) due to activation of angiogenesis and metastasis (N. Liu et 

al., 2012); besides chemoresistance (Nadal et al., 2013). 
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Illumina Probe  / 

Gene Symbol 
Gene and Protein Review 

ILMN_1753101 

VTCN1 

V-set domain containing T cell activation inhibitor 1 (VTCN1; also known as B7h.5, B7H4, B7-H4, B7S1, 

B7X, FLJ22418, Immune costimulatory protein B7-H4, PRO1291, Protein B7S1, T-cell costimulatory 

molecule B7x, UNQ659/PRO1291, VCTN1, V-set domain-containing T-cell activation inhibitor 1) is found 

on the surface of antigen-presenting cells and interacts with ligands attached to receptors on the surface of T 

cells. The protein negatively regulates the immune response of T cells by reducing the production of 

cytokines and controlling the cell cycle progression (Qian et al., 2011; Suh et al., 2006). High levels of the 

VTCN1 mRNA and the related protein are associated with a number of cancers, including ovarian and breast 

cancers (Salceda et al., 2005). The up-regulation is also associated with tumour progression and poor 

prognosis (Heinonen et al., 2008). Although VTCN1 detection is observed in PR- / HER2- tumours, the 

expression is independent of grade and stage (Tringler et al., 2005). 

ILMN_1798108 

C6orf211 

The chromosome 6 open reading frame 211 (C6orf211) is mapped in a region close to ESR1 and other genes 

(AKAP12 and CCDC170), suggesting further investigation of a possible connection with the ESR1 

transcription and  the luminal subtype in breast cancer disease. 

ILMN_1747911 

CDK1 

The cyclin-dependent kinase 1 (CDK1; also known as CDC2, CDC28A, Cell division control protein 2 

homolog, Cell division protein kinase 1, Cyclin-dependent kinase 1, DKFZp686L20222, MGC111195, 

P34CDC2, p34 protein kinase) plays a key role in the control of the cell cycle by modulating the centrosome 

as well as mitotic onset; promotes G2-M transition, and regulates G1 progress and G1-S transition associated 

with multiple interphase cyclins. The kinase activity of this protein is controlled by cyclin accumulation and 

destruction through the cell cycle. In addition, CDK1 complexes phosphorylate several substrates that trigger 

centrosome separation, Golgi dynamics, nuclear envelope breakdown, chromosome condensation, and 

apoptosis.  An abnormal phosphorylation occurs in cancer cell lines, as well as in primary breast tissues and 

lymphocytes. Moreover, high CDK1 activity was linked to the absence of a full DNA damage response in 

mitotic cells (Wei Zhang et al., 2011). Although the impact of this gene in breast cancers remains 

controversial, there is a significant association with unfavourable clinicopathologic feature such as high 

histologic grade, large tumour size, lymph node metastases and PR-negative tumours (S. J. Kim; Nakayama; 

et al., 2008). Ultimately, CDK1 may be used as a predictive factor to identify patient’s response to 

neoadjuvant chemotherapy (S. J. Kim et al., 2012; Torikoshi et al., 2013; Xia et al., 2014). 

ILMN_1666305 

CDKN3 

The protein encoded by cyclin-dependent kinase inhibitor 3 (CDKN3; also known as CDI1, CDK2-associated 

dual-specificity phosphatase, CIP2, Cyclin-dependent kinase inhibitor 3, Cyclin-dependent kinase-interacting 

protein 2, Cyclin-dependent kinase interactor 1, FLJ25787, KAP, KAP1, Kinase-associated phosphatase, 

MGC70625) belongs to the dual specificity protein phosphatase family, active toward substrates containing 

either phosphotyrosine or phosphoserine residues. CDKN3 is a cyclin-dependent kinase inhibitor, and 

interacts / dephosphorylates CDK2 kinase, thereby reducing its ability to phosphorylate the retinoblastoma 

protein (RB). Non-phosphorylated RB binds transcription factor E2F1 and prevents the G1-S transition. 

CDKN3 was reported to be deleted, mutated, or overexpressed in several types of cancers, including breast 

tumours (Yu et al., 2010). 

ILMN_1678535 

ESR1 

Estrogen receptor 1 (ESR1; also known as DKFZp686N23123, ER, Era, ER-alpha, ESR, ESRA, Estradiol 

receptor, Estrogen receptor, NR3A1, Nuclear receptor subfamily 3 group A member 1) encodes a protein 

receptor, a ligand-activated transcription factor composed of several domains important for hormone binding, 

DNA binding, and activation of transcription. Oestrogen and its receptors are central regulators of breast 

cancer disease and are associated with response to endocrine therapy. Down-regulation of ESR1, or eventual 

mutations, may indicate intrinsic resistance to tamoxifen, increased risk of tumour recurrence (Aguilar et al., 

2010; C. Kim et al., 2011; Stossi et al., 2012); even though the mechanisms by which oestrogen receptor 

dictates tumour status are poorly understood (Dunbier et al., 2011). 
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ILMN_2149164 

SFRP1 

Major gene expression changes occur during progression of neoplastic cells, including down regulation of 

secreted frizzled-related protein 1 (SFRP1; also known as FRP, FRP1, FRP-1, FrzA, SARP2, SARP-2, 

Secreted apoptosis-related protein 2, Secreted frizzled-related protein 1, sFRP-1) (Vargas et al., 2012a). 

SFRP1 functions as a negative regulator of Wnt/β-catenin pathway, implicated in several human cancers, 

including breast tumours and respective cell lines (Dahl et al., 2007; Gauger et al., 2011; Gostner et al., 2011; 

Matsuda et al., 2009; Mukherjee et al., 2012; Shulewitz et al., 2006; Suzuki et al., 2008; Ugolini et al., 2001). 

Reduced levels of SFRP1 results in hyperplastic lesions and its loss may be a critical event in cancer initiation 

(Dumont et al., 2009). In breast carcinomas, SFRP1 showed significant differences in methylation patterns 

between ER-negative and ER-positive tumours (Park et al., 2012). The hypermethylation of the SFRP1 

promoter and gene down-regulation has been widely reported in breast cancer (Browne et al., 2011; Vargas et 

al., 2012b; Yang et al., 2009) and associated with tumour invasion and decreased survival (Gauger & 

Schneider, 2014; Klopocki et al., 2004; Martin-Manso et al., 2011; Veeck et al., 2006). A potential 

combinatorial treatment - romidepsin and decitabine - has recently been administered in cell lines, promoting 

SFRP1 reexpression with consequently proliferation inhibition and cell death induction via apoptosis (Cooper 

et al., 2012). 

ILMN_1788874 

SERPINA3 

Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 (SERPINA3; also known 

as AACT, ACT, alpha-1-antichymotrypsin, Alpha-1-antichymotrypsin, Cell growth-inhibiting gene 24/25 

protein, GIG24, GIG25, MGC88254, Serpin A3) encodes a plasma protease inhibitor and member of the 

serine protease inhibitor class. SERPINA3 regulates the activity of neutrophil cathepsin G and is an 

oestrogen-induced gene. In breast cancer, the mRNA increased expression was reported as an indicator of 

good prognosis in oestrogen receptor positive breast cancer (Cimino et al., 2008; Sano et al., 2012; 

Yamamura et al., 2004). It is a maker of oestrogen regulation (Miller & Larionov, 2010); besides a predictor 

of tumour response to neoadjuvant chemotherapy (Sano et al., 2012). 

ILMN_1785570 

SUSD3* 

The sushi domain containing 3 (SUSD3; also known as MGC26847, Sushi domain-containing protein 3, 

UNQ9387/PRO34275) down-regulated in breast carcinomas is associated with a malignant phenotype (short-

term overall survival, endocrine insensitivity, triple-negative status, poor tumour differentiation). SUSD3 is 

highly expressed in ER-positive breast tumours and the treatment with oestradiol may increase the gene 

expression in cancer cells (Moy et al., 2014). The SUSD3 abnormal mRNA levels and the protein function, 

however, are still unclear and require urgent investigation (Cimino et al., 2008). 

ILMN_1803236 

CLCA2 

The protein encoded by chloride channel accessory 2 (CLCA2; also known as CACC, CACC3, CaCC-3, 

Calcium-activated chloride channel family member 2, Calcium-activated chloride channel protein 3, 

Calcium-activated chloride channel regulator 2, CLCRG2, FLJ97885, hCaCC-3, hCLCA2) belongs to the 

calcium sensitive chloride conductance protein family. The protein plays a role in modulating chloride 

current across the plasma membrane in a calcium-dependent mode. CLCA2 is also involved in basal cell 

adhesion and/or stratification of squamous epithelia. In addition, the molecule is involved in the p53 network 

and may act as a tumour suppressor in breast and colorectal cancer, inhibiting cancer cell migration and 

invasion (Sasaki et al., 2012; Vijay Walia et al., 2009; V. Walia et al., 2012). The mechanisms behind the 

silencing of CLCA2 in luminal breast cancers and the up-regulation in HER2-enriched and basal-like 

subtypes, however, have not been elucidated. Ultimately, cell lines CLCA2-negative treated with 

demethylating agents restored the expression of the gene, suggesting an epigenetic control (X. Li et al., 

2004). 
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ILMN_2161820 

GLYATL2* 

The enzyme encoded by glycine-N-acyltransferase-like 2 (GLYATL2; also known as Acyl-CoA:glycine N-

acyltransferase-like protein 2, BXMAS2-10, GATF-B, Glycine N-acyltransferase-like protein 2, MGC24009) 

conjugates medium- and long-chain saturated and unsaturated acyl-CoA esters to glycine, resulting in the 

production of N-oleoyl glycine and also N-arachidonoyl glycine. N-Oleoyl glycine and N-arachidonoyl 

glycine are identified as signalling molecules that regulate the perception of pain and body temperature, and 

also have anti-inflammatory properties (Waluk et al., 2012). GLYATL2 is up-regulated in salivary gland and 

trachea, and detected also in spinal cord and skin fibroblasts. In addition, the high levels of the gene in skin 

and lung may indicate a role in barrier function/immune response and lipid signalling (Waluk et al., 2010). 

ILMN_1810978 

MUCL1* 

The mucin-like 1 (MUCL1; also known as Mucin-like protein 1, Protein BS106, SBEM, Small breast 

epithelial mucin, UNQ590/PRO1160) encodes a 90 amino acids glycoprotein that exhibits characteristics of 

members of the mucin family. The presence of a hydrophobic signal peptide within the protein sequence 

suggests that MUCL1 is a secreted and subjected to proteolytic processing. The putative gene is expressed 

only in mammary and salivary glands and it is promising as a new biomarker with high tissue specificity (L. 

Liu et al., 2013), besides with a great potential for predicting metastasis and response to neoadjuvant 

chemotherapy (Z. Z. Liu et al., 2010). In breast cancer, the protein is more frequently observed in ER-

negative than in ER-positive cancers, and positively associated with HER2 overexpression. The evaluation of 

MUCL1 expression, nonetheless, needs to consider also the heterogeneity and different molecular subtypes 

(Valladares-Ayerbes et al., 2009). In general, increased MUCL1 is associated with high tumour grades, lymph 

node metastasis (Weigelt et al., 2004) and reduced survival (Miksicek et al., 2002; Skliris et al., 2008). 

ILMN_1773459 

SOX11* 

SRY (sex determining region Y)-box 11 (SOX11; also known as Transcription factor SOX-11) encodes a 

protein involved in the regulation of embryonic development and in the determination of the cell fate. The 

protein acts as a transcriptional regulator after modelling a complex with other proteins. SOX11 functions in 

the developing nervous system and play a role in tumorigenesis. In breast cancer patients, the gene up-

regulation might contribute to a proliferative genotype which may be linked to poor prognosis and therefore 

worse overall survival (Lopez et al., 2012). Interestingly, SOX11 levels were higher in basal-like and HER2-

enriched breast cancers compared with other subtypes (Zvelebil et al., 2013). 

ILMN_1674533 

TRPV6 

Transient receptor potential cation channel, subfamily V, member 6 (TRPV6; also known as ABP/ZF, 

Calcium transport protein 1, CaT1, CAT1, CATL, CaT-L, CaT-like, ECaC2, ECAC2, Epithelial calcium 

channel 2, HSA277909, LP6728, Transient receptor potential cation channel subfamily V member 6, TrpV6, 

ZFAB) encodes a member of a family of multipass membrane proteins that functions as calcium channels. 

The up-regulation of TRPV6 is observed in several tumours such as breast, prostate, colon, thyroid and ovary; 

and in various tumour cell lines (Bolanz et al., 2008; Bowen et al., 2013). In particular, increased TRPV6 

expression is a feature of ER-negative breast tumours (HER2-enriched and basal-like subtypes) and has been 

associated to patient decreased survival (Peters et al., 2012). The mechanism underlying the TRPV6-mediated 

regulation of cancer progression and its downstream signalling, however, remain poorly understood (S. Y. 

Kim et al., 2013). Inhibitors of the TRPV6 channel have been investigated as potential targets for diagnosis, 

prognosis and/or therapeutic approaches in cancers (Dhennin-Duthille et al., 2011; Landowski et al., 2011). 

ILMN_1687235 

HPN 

The gene hepsin (HPN; also known as Serine protease hepsin, TMPRSS1, Transmembrane protease serine 1) 

encodes a type II transmembrane serine protease that is involved in diverse cellular functions, including cell 

growth and maintenance of cell morphology. The protein is cleaved into a catalytic serine protease chain and 

a non-catalytic scavenger receptor. The expression of the encoded protein is associated with the progression 

of several types of malignancies, nevertheless little is known about its clinical and biological significance in 

breast cancer. HPN is up-regulated in breast tumours; besides significantly associated with tumour stage, 

lymph node metastasis, oestrogen receptor positivity, and progesterone receptor positivity (Xing et al., 2011). 
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ILMN_1655915 

MMP11 

The matrix metallopeptidase 11 (stromelysin 3) (MMP11; also known as Matrix metalloproteinase-11, MMP-

11, SL-3, ST3, STMY3, Stromelysin-3) is a member of the matrix metalloproteinase (MMP) family of 

proteases. These proteins are constituent of the extracellular matrix and act on the epithelial/connective 

interface in embryogenesis, wound healing, tissue involution, and reproduction. MMP11 expressed in 

fibroblasts near areas of invasive carcinoma lead to the gain of metastatic potential for spread of tumour cells, 

with patterns of subsequent invasion and migration for different types of solid tumours and cell lines 

(DeLassus et al., 2011; DeLassus et al., 2008; Kasper et al., 2007; Kwon et al., 2011; K.-W. Min et al., 2013). 

In breast cancer, higher expression level of MMP11 is correlated with patients having poorly differentiated 

tumours, increased invasiveness, node metastasis, and worse prognosis (Cheng et al., 2010; Eiro et al., 2013; 

Eiseler et al., 2009; Garcia et al., 2010; Tan et al., 2013). MMP11 gene expression analysis may also be used 

in clinical applications for breast cancer diagnosis, management and therapy (Hegedüs et al., 2008; Selvey et 

al., 2004). Ultimately, the up-regulation of this gene is linked to other markers such as p53, ER and HER2 (K. 

W. Min et al., 2012). 

ILMN_1711470 

UBE2T 

The ubiquitin-conjugating enzyme E2T (putative) (UBE2T; also known as Cell proliferation-inducing gene 

50 protein, HSPC150, PIG50, Ubiquitin carrier protein T, Ubiquitin-conjugating enzyme E2 T, Ubiquitin-

protein ligase T) accepts ubiquitin from the E1 complex and catalyses its covalent attachment to other 

proteins. The covalent conjugation of ubiquitin to proteins regulates diverse cellular pathways and proteins. 

Ubiquitin is transferred to a target protein through a concerted action of ubiquitin-activating enzyme (E1), 

ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). UBE2T acts as a specific E2 ubiquitin-

conjugating enzyme for the Fanconi anemia complex and contribute to ubiquitination and degradation of 

BRCA1. The enzyme is up-regulated in different types of cancer including breast, bladder, lung, and prostate 

cancers; playing essential role in cell proliferation. In breast tumours, the gene up-regulation cause the 

decrease of the BRCA1 levels, however, major pathways involving UBE2T are still poorly understood 

(Tomomi Ueki et al., 2009). 

ILMN_1789507 

COL11A1 

The collagen, type XI, alpha 1 (COL11A1; also known as CO11A1, COLL6, Collagen alpha-1(XI) chain, 

STL2) encodes one of the two alpha chains of type XI collagen, a minor fibrillar collagen. Type XI collagen 

is a heterotrimer and play an important role in fibrillogenesis by controlling lateral growth of collagen fibrils. 

COL11A1 is expressed by both the epithelial and stromal compartments and its expression is deregulated in a 

range of cancers, such as breast and colon. In particular, molecules related to extracellular matrix remodelling 

(e.g. COL11A1) are differentially expressed in breast tumours 'in situ' and invasive; enriched in  metastatic 

tumour cells (Ellsworth et al., 2009; H. Kim et al., 2010; Vargas et al., 2012a). 

ILMN_1740609 

CCL15 

The chemokine (C-C motif) ligand 15 (CCL15; also known as C-C motif chemokine 15, Chemokine CC-2, 

HCC-2, HMRP-2B, Leukotactin-1, LKN1, Lkn-1, LKN-1, Macrophage inflammatory protein 5, MIP-1d, MIP-

1D, MIP-1 delta, MIP5, MIP-5, Mrp-2b, MRP-2B, NCC3, NCC-3, SCYA15, SCYL3, Small-inducible cytokine 

A15, SY15) encodes a secreted protein characterised by two adjacent cysteines, further processed into 

numerous smaller functional peptides. The protein has chemotactic factor that attracts T cells and monocytes; 

acts through C-C chemokine receptor type 1 (CCR1) and also binds to type 3 (CCR3). In hepatocellular 

carcinoma, the up-regulation of CCL15 promotes cell migration and invasion (Y. Li et al., 2013). High levels 

of CCL15 also increase the expression of matrix metalloproteinase and induce angiogenesis (Itatani et al., 

2013). 
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ILMN_1651282 

COL17A1* 

The collagen, type XVII, alpha 1 (COL17A1; also known as 180 kDa bullous pemphigoid antigen 2, 

BA16H23.2, BP180, BPAG2, Bullous pemphigoid antigen 2, Collagen alpha-1(XVII) chain, FLJ60881, 

KIAA0204, LAD-1) encodes the alpha chain of type XVII collagen, a transmembrane protein or a soluble 

form generated by proteolytic processing of the full length form. The protein is a structural component of 

hemidesmosomes, multiprotein complexes at the dermal-epidermal basement membrane zone that mediate 

adhesion of basal keratinocytes to the underlying membrane. Hemidesmosomal components are also 

implicated in signal transduction and thereby are able to influence cell growth, motility and differentiation. In 

neoplastic tissue, COL17A1 aberrant expression depends on the stage of the tumour, down-regulated in mild 

dysplasia and up-regulation as the tumour further evolves (van Zalen et al., 2006). 

ILMN_1723684 

DARC 

Duffy blood group, atypical chemokine receptor (DARC; also known as CCBP1, CD234, Dfy, Duffy 

antigen/chemokine receptor, FY, Fy glycoprotein, Glycoprotein D, GPD, GpFy, Plasmodium vivax receptor, 

WBCQ1) encodes a glycosylated membrane protein and a non-specific receptor for several chemokines. 

Polymorphisms in this gene are the basis of the Duffy blood group system. It is reported that DARC plays a 

negative regulatory role in human breast cancer. Overexpression of DARC protein in breast cancer cells leads 

to significant inhibition of tumorigenesis and metastasis (Bandyopadhyay et al., 2006; J. Wang et al., 2013; 

Zeng et al., 2011). DARC is also correlated with breast cancer incidence, axillary lymph node metastasis and 

overall survival (X. F. Liu et al., 2012). 

ILMN_1809099 

IL33* 

Interleukin 33 (IL33; also known as C9orf26, DKFZp586H0523, DVS27, IL1F11, IL-1F11, IL-33, 

Interleukin-1 family member 11, Interleukin-33, NFEHEV, NFHEV, NF-HEV, Nuclear factor from high 

endothelial venules, RP11-575C20.2) is a member of the IL1 family that induces production of T helper-2 

(Th2) associated cytokines. The protein acts as a chemoattractant tor Th2 cells, and amplifies immune 

responses during tissue injury. IL33 also functions as a chromatin-associated nuclear factor with 

transcriptional repressor properties. In breast cancer cells, a frequent overexpression is observed, though the 

gene deregulation is not clearly understood in the disease (Wu et al., 2012). 

ILMN_1766650 

FOXA1 

The forkhead box A1 (FOXA1; also known as Forkhead box protein A1, Hepatocyte nuclear factor 3-alpha, 

HNF3A, HNF-3A, HNF-3-alpha, MGC33105, TCF3A, TCF-3A, Transcription factor 3A) encodes a member 

of the forkhead class of DNA-binding proteins. The nuclear factor is a transcriptional activator involved in 

embryonic development, establishment of tissue-specific gene expression and regulation of gene expression 

in differentiated tissues. The protein is also implicated in the development of multiple organs such as liver, 

pancreas, thyroid, prostate and breast. Basically, it modulates the transcriptional activity of nuclear hormone 

receptors (Bernardo & Keri, 2012). FOXA1 acts in both androgen receptor (AR) and oestrogen receptor (ER), 

directing the binding location, and therefore the transcriptional activity (Augello et al., 2011; Ni et al., 2011; 

Robinson et al., 2011). In breast cancer, FOXA1 plays a pivotal role in mammary ductal morphogenesis 

(Bernardo et al., 2010; Fu et al., 2011), tumour early stage, drug response, and metastatic disease (Robinson 

& Carroll, 2012). Mutation and SNP variation located in enhancer regions may alter FOXA1 binding affinity 

and affect breast cancer risk (Cowper-Sal et al., 2012; Katika & Hurtado, 2013; Meyer & Carroll, 2012; 

Robinson et al., 2013). In addition, high expression of FOXA1 is correlated with luminal A subtype and it is a 

significant predictor of survival in patients with ER-positive tumours (Badve et al., 2007; Bernardo & Keri, 

2012; Mehta et al., 2012; Yamaguchi et al., 2008), and a marker of good prognosis (Albergaria et al., 2009; 

Habashy et al., 2008; Hisamatsu et al., 2012; Hisamatsu et al., 2015). Ultimately, genome analysis of ER-

FOXA1 interactions is required to understand the molecular mechanisms of ER activity (Hurtado et al., 2011; 

Kong et al., 2011; Magnani & Lupien, 2014; Naderi et al., 2012). 
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ILMN_1811387 

TFF3 

The trefoil factor 3 (intestinal) (TFF3; also known as hITF, HITF, hP1.B, Intestinal trefoil factor, ITF, P1B, 

Polypeptide P1.B, TFI, Trefoil factor 3) gene is translated in a stable secretory protein having at least one 

copy of the trefoil motif and a domain with three conserved disulphides. TFF3 functions as ‘luminal 

epithelium guardian’, involved in the maintenance and repair of the mucosa after damage. Besides, promotes 

the mobility of epithelial cells in healing processes. Up-regulation of TFF3 is observed in various neoplastic 

diseases, including breast cancer, where the gene has been target as a biomarker (Lasa et al., 2013). TFF3 is 

induced by hormones such as oestrogen, and is usually combined with TFF1 expression in ER-positive 

malignant breast tumour cells (Ahmed et al., 2012; Lacroix, 2006). Moreover, the TFF3 levels are close to 

that of ESR1, yet reduce after tamoxifen treatment (Fenne et al., 2013; Taylor et al., 2010). These genes are 

components of the ‘luminal epithelial’ signature defining a well-differentiated, low-grade intrinsic subtype of 

breast cancer: the luminal A (Lacroix, 2006). Basal-like and claudin-low breast cancer subtypes showed 

frequent hypermethylation of the TFF3 promoter region (Roll et al., 2013; Sandhu et al., 2014). 

ILMN_1738401 

FOXC1 

The forkhead box C1 (FOXC1; also known as ARA, FKHL7, Forkhead box protein C1, Forkhead-related 

protein FKHL7, Forkhead-related transcription factor 3, FREAC3, FREAC-3, IGDA, IHG1, IRID1, RIEG3) 

is part of the forkhead family of transcription factors, characterised by a common DNA-binding domain. All 

the mechanisms through FOXC1 are not yet determined; however, the gene plays important roles in cell 

growth, survival, differentiation, and migration. FOXC1 is identified as a functionally important biomarker of 

breast cancer aggressiveness, particularly associated with basal-like breast cancer subtype (Sizemore & Keri, 

2012; Wang et al., 2012). The gene up-regulation in breast tumour cells induces epithelial-mesenchymal 

transition, drug resistance, and increased cell proliferation and invasion (Tkocz et al., 2012). 

ILMN_1689146 

GABRP 

Gamma-aminobutyric acid (GABA) A receptor, pi (GABRP; also known as GABA(A) receptor subunit pi, 

Gamma-aminobutyric acid receptor subunit pi, MGC126386, MGC126387) encodes a transmembrane 

protein composed by multisubunit in the chloride channel that mediates synaptic transmission in the central 

nervous system. The gene is expressed in several non-neuronal tissues including breast and ovaries. In breast, 

GABRP is mainly expressed in myoepithelial/basal cells, and the function is related to tissue contractility 

(Lacroix, 2006). In breast cancer cells, the gene is normally up-regulated among ER-negative patients 

(Andres et al., 2013; Symmans et al., 2005). 

ILMN_1807423 

IGF2BP3* 

The protein encoded by insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3; also known as 

CT98, DKFZp686F1078, hKOC, IGF2 mRNA-binding protein 3, IGF-II mRNA-binding protein 3, IMP3, 

IMP-3, Insulin-like growth factor 2 mRNA-binding protein 3, KH domain-containing protein overexpressed 

in cancer, KOC1, VICKZ3, VICKZ family member 3) is primarily located in the nucleolus and belongs to a 

conserved family of RNA-binding proteins. The RNA-binding factor recruits target transcripts to cytoplasmic 

protein-RNA complexes (mRNPs), modulating the rate and location of endonuclease attacks or microRNA-

mediated degradation. The protein, nonetheless, is involved not only in RNA synthesis and metabolism, but 

in various important aspects of cell function, such as cell polarisation, migration, morphology, metabolism, 

proliferation and differentiation. IGF2BP3 is largely absent in adult tissues but de novo synthetised or 

severely up-regulated in various tumours and tumour-derived cells. In breast cancer, the up-regulation 

enhances tumour growth, angiogenesis and metastasis, resulting in poorer survival (Bell et al., 2013; Fadare 

et al., 2013; Lochhead et al., 2012), and chemoresistance (Samanta et al., 2013).  High expression has also 

been associated with triple-negative breast carcinomas (Samanta et al., 2012; Walter et al., 2009; Won et al., 

2013). 
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ILMN_1692938 

PSAT1 

The phosphoserine aminotransferase 1 (PSAT1; also known as EPIP, MGC1460, Phosphohydroxythreonine 

aminotransferase, Phosphoserine aminotransferase, PSA, PSAT) encodes a member of the class-V pyridoxal-

phosphate-dependent aminotransferase family. Mutations in this gene are associated with phosphoserine 

aminotransferase deficiency. PSAT1 methylation and aberrant expression are strongly correlated with specific 

clinical and pathologic features of breast cancer. Notably, the PSAT1 hypermethylation is associated with 

low-grade, low-proliferation, hormone receptor ER-positive, lymph node positive breast cancer in post-

menopausal women (Bu et al., 2013); besides it is an indicator of response to tamoxifen endocrine therapy 

(Martens et al., 2005). On the other hand, high expression of PSAT1 is associated with decreased relapse-free 

and overall survival of patients, and linked to malignant phenotypic features of breast cancer (Bu et al., 

2013). 

ILMN_1668766 

ROPN1 

The rhophilin associated tail protein 1 (ROPN1; also known as Cancer/testis antigen 91, CT91, 

DKFZp434B1222, ODF6, Rhophilin-associated protein 1A, RHPNAP1, ROPN1A, ropporin, Ropporin-1A) is 

an important reproduction related gene. The protein is involved in sperm maturation, motility, capacitation, 

hyperactivation and acrosome reaction. Other important functions such as cAMP-dependent protein kinase 

regulator activity, protein binding activity, phosphorylation and signal transduction regulation were reported; 

even though ROPN1 requires further investigation (Lan et al., 2012). Recently, ROPN1 was validated with 

diagnostic significance in basal-like breast cancer cells as one of the conserved elements of the SOX10 

signature (Ivanov et al., 2013). 

Note: *Elements named according to Human HT (Illumina HT-12 v3) and matching different regions of the 

genome with more than one annotation in UCSC and iHOP. 
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CHAPTER 5 

 

5. ITERATIVELY REFINING THE METABRIC 

SUBTYPE LABELS 

 

As discussed in Chapter 4, a thorough review of the five intrinsic subtypes is essential to 

investigators in the field, given the importance of the METABRIC data set to breast cancer 

research. Then, Chapter 5 consists in the application of an iterative approach to improve class 

prediction and label assignments across samples. The content is available as a 'short report' in 

BMC BioData Mining
7
 and presented here in sections 5.1 Introduction, 5.2 Methods, 5.3 

Results and Discussion, 5.4 Conclusion, 5.5 References and 5.6 Supporting Information. 

This analysis is based on an ensemble learning technique to assign the sample subtype label 

using a robust iterative approach. The new labelling is also compared with clinicopathological 

markers and patients' overall survival. The refinement of the METABRIC sample labels 

improves the source of fundamental science overall leading to more accurate outcomes for 

future clinical applications in medicine. 

 

  

                                                      

7
 Milioli, H.H.; Vimieiro, R.; Tishchenko, I.; Riveros, C.; Berretta, R.; Moscato, P. (2016). Iteratively 

refining breast cancer intrinsic subtypes in the METABRIC dataset. BioData Mining; 9:2. 
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5.1 Introduction 

 

Translational research aims at bringing basic scientific discoveries into outcomes that help 

improve clinical decision-making. The PAM50 Breast Cancer Intrinsic Classifier (Parker et al., 

2009) has lately been used to assign the molecular subtypes (luminal A, luminal B, HER2-

enriched, basal-like and normal-like) (Hu et al., 2006; Perou et al., 2000; Sørlie et al., 2001; 

Sørlie et al., 2003) based on shrunken centroids of gene expression profiles (Tibshirani et al., 

2002). It uses a Single Sample Predictor (SSP) model with an embedded 50-gene assay. In spite 

of the relevance of this method for clinical management, there are limited investigations in the 

literature that support the classification approach. Comparison with other methods showed only 

moderate agreement between subtype labels assigned, as well as independent clinical prognostic 

information (Ebbert et al., 2011; Haibe-Kains et al., 2012; Weigelt et al., 2010). 

Other multi-gene signatures have also been reported within the molecular patterns 

strongly correlated to clinical prognosis (Fan et al., 2011; Wang et al., 2005), disease 

progression (Seoane et al., 2014; Venet et al., 2011), and patient survival (Naderi et al., 2006). 

Different methods, however, highlight a variety of gene lists of distinct size due to the analysis 

of diverse microarray data and platform technologies. Additionally, the methods currently 

applied also bring a pragmatic concern of using SSP models for predicting disease subtypes. 

Multiple classifiers or ensemble learning model, on the other hand, have compensated for poor 

learning algorithms by performing extra computation (Gómez-Ravetti & Moscato, 2008). 

Therefore, there is an urgent need for translating these novel strategies to provide more accurate 

predictions of clinicopathological outcome. 

In 2012, METABRIC disclosed a rich gene expression cohort widely used for 

investigating breast cancer diseases (Curtis et al., 2012). In spite of the quality of this data set, 

there are some inconsistencies with regards to the subtype labels assigned in the original cohort. 

In our previous study (Milioli et al., 2015), a thorough review of the intrinsic subtypes was 

suggested and is, therefore, mandatory given the importance of this data set to breast cancer 

research. For this report, we then propose a more robust approach to iteratively refine the labels 

in the METABRIC data set, based on ensemble learning. The new labels are yet correlated to 

well-established clinicopathological markers and patient overall survival. 
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5.2 Methods 

 

5.2.1 Transcriptomic Data Set 

We use the transcriptomic data set disclosed by METABRIC (EGAS00000000083), 

which contains cDNA microarray profiling of about 2000 breast cancer samples performed on 

the Illumina HT-12 v3 platform (Illumina Human WG-v3) (Curtis et al., 2012). The samples 

were originally partitioned into two subsets: Discovery (997 samples) and Validation (989 

samples), respectively used as training and test sets in our analysis. In this cohort, tumour 

samples were originally assigned on the five intrinsic subtypes (luminal A, luminal B, HER2-

enriched, basal-like and normal-like) according to the PAM50 method (Parker et al., 2009). 

 

5.2.2 The Refinement Method 

The overview of the refinement method applied on the METABRIC data set is shown in 

Figure 5.1. The process is initialised with the discovery set and the original PAM50 labels as 

defined in Curtis et al. (2012). After computing the CM1 score (more details in Chapter 4, 

Equation 4.1), the top 10 highly discriminative probes (5 with the greatest positive CM1 score 

values – indicating up-regulated probes relative to the other subtypes, and 5 with the smallest 

negative values – representing down-regulation) are chosen for each class. The set of new 

features is used to train the 24 classifiers from the Weka software suite (Witten et al., 2016), 

where a 10-fold cross-validation is performed. If the majority of the classifiers agree on the 

same label, the sample is assigned with the corresponding subtype; otherwise it is marked as 

inconsistent and not further considered in the process. The stopping criterion is reached when 

there are no changes in the sample labels and feature set, or when the desired Fleiss' kappa value 

(κ = 0.92) is achieved between the previous and the current iteration steps. Values between 0.81 

- 1 show almost perfect agreement, thus 0.92 is above the average for this interval.  

When the stopping condition is fulfilled, the new list of features and sample labels are 

used for the training-test setting. Samples from the validation data set or previously marked as 

inconsistent are then classified by training the classifiers in the refined discovery set. However, 

in the training-test setting, at least two thirds of classifiers in the ensemble must agree on the 

same label for it to be assigned to a sample. As a larger data set is expected to provide more 

robustness, all the re-classified samples are run through the same refinement procedure again. 

The final outcome of this process is the set of refined features and the new labels. 
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Since many classifiers tend to perform best when trained on classes of equal sample 

size, we adjusted the number of patients in each subtype by looking at the minimum number of 

samples in one of the subgroups. The normal-like subtype is represented by only 58 samples; 

thus, the total number of samples used in the training is 290. For each other subtype, 58 samples 

are randomly chosen from the data set. The whole process is run ten times due to the 

interchangeable sample selection that weight the different gene expression information used for 

training purposes.  

 

Figure 5.1 Refinement Method 

The process is initialised with labels assigned using the PAM50 method. After computing the 

CM1 score, the top 10 highly discriminative probes are selected for each subtype. This set of 

features is used to train the 24 distinct classifiers for a 10-fold cross-validation classification. 

Samples are relabelled (eventually with the same label) if the classifiers agree in at least 50% of 

the cases; otherwise they are marked as inconsistent and not further considered in the iteration 

process. The stopping criterion is reached when there are no more changes in the sample labels 

or selected feature set, or when the desired Fleiss' kappa is achieved. After stopping, the final 

feature set and sample labels are used to classify the samples previously marked as inconsistent 

or from the validation data set. These samples are run through the same refinement procedure; 

inconsistent samples are reclassified and labels are refined. 
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5.2.3 The CM1 Score 

The CM1 score, previously defined in Chapter 4, is a supervised method used to rank 

the variation of gene expression levels across samples from two different classes (Marsden et 

al., 2013; Milioli et al., 2015). The measure helps to identify the most discriminative features 

for each of the five breast cancer intrinsic subtypes: luminal A, luminal B, HER2-enriched, 

basal-like and normal-like. For a given subtype, we compute the CM1 score for each of the 

48803 probes and select the 10 most discriminative ones. This happens iteratively in the 

refinement process each time the classifiers attribute a new label to a sample. 

 

5.2.4 Statistical Analysis 

Statistical measures have been computed in order to assess the quality of our results. 

We created a contingency table r x c, with “r” rows and “c” columns, comparing the predicted 

labels (rows) and labels from the previous refinement step (columns). Considering this table, we 

performed three tests, as follows: 

 

 Cramer's V (Liebetrau, 1983) is used to measure the level of association between 

sample original and predicted labels (more details in Chapter 4, Equation 4.2).  

 Fleiss' kappa (Fleiss, 1971; Fleiss et al., 2004) is a popular interrater reliability metric 

used to gauge the agreement between the original PAM50 labels and the labels assigned 

by the majority of classifiers (more details in Chapter 4,  Equation 4.4).  

 Adjusted Rand Index (ARI) (Hubert & Arabie, 1985; Vinh et al., 2009) measures the 

agreement between pairs of samples that are labelled either in the same class or in 

different classes (more details in Chapter 4, Equation 4.5).  

 

5.2.5 Clinical Data and Survival Curves 

The clinical markers oestrogen and progesterone receptors (ER and PR) and the human 

epidermal growth factor receptor 2 (HER2) are compared between original METABRIC labels 

and refined labels. Survival analysis was also performed, using Cox proportional hazards model 

from the package survival in the R software (Therneau & Grambsch, 2000). The p-value, used 

to test the null hypothesis that the curves stratified by subtype are identical in the overall 

population, is calculated using the log-rank test. 
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5.3 Results and Discussion 

 

5.3.1 Discriminative Probes Used to Assign Intrinsic Subtype Labels in 

the Refinement Process 

Samples were assigned into the five intrinsic subtypes based on the majority voting of 

classifiers (Supporting Information – Table 5.3), supported by their consistent performance 

across the ten runs (Supporting Information – Table 5.4 and Table 5.5, Figure 5.4 and 

Figure 5.5). During this procedure, 74 discriminative probes appeared (Supporting 

Information – Table 5.6) and, among then, 35 were recurrently selected (Figure 5.2). Overall, 

the association between the initial labels and those predicted using the ensemble learning (Table 

5.1) was on average 0.95 according to Cramer's V. The consensus of sample labelling across 

different classifiers measured using Fleiss' kappa was 0.92. The ARI (1.00) also showed a 

maximum agreement between pairs of samples that are labelled either in the same or in different 

classes. 

 

Table 5.1 Contingency table for predicted labels vs. initial subtypes (rows and columns, 

respectively) 

Subtypes Lum A Lum B HER2 Basal Normal Summary 

Lum A 563 94 11 2 58 728 

Lum B 102 383 77 19 19 600 

HER2 7 1 149 59 18 234 

Basal 0 0 0 230 3 233 

Normal 33 0 1 15 95 144 

Inconsistent 16 14 2 6 9 47 

Summary 721 492 240 331 202 1986 

Note: Columns represent the initial subtype labels, while rows contain the predicted labels. Breast cancer 

subtypes: Lum A – luminal A; Lum B – luminal B; HER2 – HER2-enriched; Basal – basal-like; Normal –

normal-like. 
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Figure 5.2 The heat map of refined intrinsic features selected using CM1 score 

The heat map diagram exhibit 35 probes (rows) and 1992 samples (columns) from the discovery 

and validation sets ordered according to gene expression similarity. For visualisation, the 

expression values are normalised across the probes using a two-sided threshold of 1% (for 

under- and over-expression). The bars on the bottom show the sample distribution according to 

the refined and original labels assigned to the METABRIC cohort.  

 

 

5.3.2 New Subtype Labels Reveal More Reliable Distribution of Clinical 

Markers and Survival Outcomes 

We correlated the METABRIC and predicted labels with the current clinical markers 

ER, PR and HER2. Table 5.2 shows the changes in number of samples across subtypes, labelled 

with the PAM50 method and refined labels, respectively. The refinement process improved the 

overall distribution to what is expected for each class: luminal A (ER+, PR+, HER2-), luminal 

B (ER+, PR±, HER2±), HER2-enriched (ER-, PR-, HER2+) and basal-like (ER-, PR-, HER2-); 

especially for HER2-enriched and basal-like subtypes. Samples labelled as inconsistent in our 

study may also reflect the heterogeneity of the disease and a hint to as-yet improperly 

characterised molecular subtypes. 
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 Furthermore, the patient's overall survival significantly improved across subtypes when 

the original and refined labels are used to plot the curves for the METABRIC discovery and 

validation sets (Figure 5.3). The groups have a well-defined separation after the refinement 

process (p value 2.8 x 10
-26

) compared to the original labels (p value 5.4 x 10
-18

). These results 

also support a better characterisation of the intrinsic groups after the iterative approach. 

 

Table 5.2 Number of samples for each clinical marker in the METABRIC data set 

according to the PAM50 method and refinement process 

PAM50 method      

Class\Marker PR+ PR- ER+ ER- HER2+ HER2- 

Lum A 550 171 717 4 23 698 

Lum B 309 183 492 0 45 447 

HER2 51 189 98 142 135 105 

Basal 29 302 41 290 30 301 

Normal 106 96 164 38 16 186 

Refinement process      

Class\Marker PR+ PR- ER+ ER- HER2+ HER2- 

Lum A 558 170 726 2 14 714 

Lum B 358 242 599 1 83 517 

HER2 11 223 19 215 139 95 

Basal 7 226 9 224 4 229 

Normal 85 59 115 29 4 140 

Inconsistent 26 21 44 3 5 42 

Summary 1045 941 1512 474 249 1737 

Note: Clinical markers: PR – progesterone receptor; ER – estrogen receptor; HER2 – human epidermal 

growth factor receptor 2. Breast cancer subtypes: Lum A – luminal A; Lum B – luminal B; HER2 – 

HER2-enriched; Basal – basal-like; Normal – normal-like. 
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Figure 5.3 The survival curves for original and refined labels in the METABRIC 

discovery and validation sets 

The survival curves for original and refined labels in the METABRIC discovery and validation 

sets. The survival curves for each breast cancer subtype are generated using Cox proportional 

hazard model. Each curve represents the survival probability at a certain time after the 

diagnosis. Drops in the curve indicate death. The probabilities of the last 10 observations are 

plotted in dash. 
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5.4 Conclusion 

 

The iterative approach using CM1 score and ensemble learning has shown a great potential for 

predicting more accurate sample subtypes in the METABRIC breast cancer data set. The refined 

labels are of great value to breast cancer research and future clinical translational science 

(Supporting Information – Text 1). Given the relevance of accurate subtype assignments, we 

encourage researchers to consider the proposed refined labels when analysing the METABRIC 

data set. 
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5.6 Supporting Information 

 

Supporting Information – Table 5.3 

Table 5.3 Refined subtype labels in the METABRIC data set 

The refined breast cancer subtype labels defined for each sample in the METABRIC data set are 

listed. Available online: doi:10.1186/s13040-015-0078-9. 

 

 

Supporting Information – Table 5.4 

Table 5.4 List of the 24 classifiers used in the ensemble learning 

Family Classifier Software Author 

Bayes      

BayesNet  Remco Bouckaert        

NaiveBayes  
Len Trigg,  

Eibe Frank  

NaiveBayesUpdateable  
Len Trigg,  

Eibe Frank  

Functions  

Logistic  Xin Xu                 

MultilayerPerceptron  Malcolm Ware           

SimpleLogistic  
Niels Landwehr,  

Marc Sumner  

SMO  

Eibe Frank,  

Shane Legg,  

Stuart Inglis  

Lazy       

IBk  

Eibe Frank,  

Len Trigg,  

Stuart Inglis 

KStar  
Len Trigg,  

Abdelaziz Mahoui  

Meta       

AttributeSelectedClassifier  Mark Hall              

Bagging  

Eibe Frank,  

Len Trigg,  

Richard Kirkby 

ClassificationViaRegression  
Eibe Frank,  

Len Trigg  

LogitBoost  
Len Trigg,  

Eibe Frank  

MultiClassClassifier  

Eibe Frank,  

Len Trigg,  

Richard Kirkby  

RandomCommittee  Eibe Frank             

Rules      

DecisionTable  Mark Hall              

JRip  
Xin Xu,  

Eibe Frank     

PART  Eibe Frank             

Trees      HoeffdingTree  Richard Kirkby, 
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Mark Hall  

J48  Eibe Frank             

LMT  
Niels Landwehr, 

Marc Sumner  

RandomForest  Richard Kirkby         

RandomTree  
Eibe Frank,  

Richard Kirkby   

REPTree  Eibe Frank   

 

The table shows the family and implementation authors for each method algorithm. The set of 

classifiers used in this work correspond to a diverse group of classifier families, as implemented 

in the Weka 3.7.12 software package. The corresponding references are available online: 

doi:10.1186/s13040-015-0078-9. 

 

 

 

Supporting Information – Table 5.5 

Table 5.5 Average agreement of classifiers per subtype 

Subtype Agreement 
Agreement 

(no Inc.) 

Luminal A 
0.84 0.90 

Luminal B 
0.88 0.92 

HER2-enriched 
0.94 0.99 

Basal-like 
0.96 0.99 

Normal-like 
0.79 0.90 

Average 
0.88 0.94 

Note: The numbers represent the average agreement calculated 

across ten runs, with relation to the final labels. The “no Inc", in 

the second column, excludes samples labelled “Inconsistent" 

from the calculation, while in the first column all samples are 

taken. 
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Supporting Information – Table 5.6 

Table 5.6 Probe appearance after ten iterative processes and the respective annotation 

based on Dunning et al. (2010) and Illumina array data  

IlluminaID 
Probe 

Quality 

Entrez 

Reannotated 

Symbol 

Reannotated 
Ensembl Reannotated 

Probe 

App. 

ILMN_2326273 Perfect 1117 CHI3L2 ENSG00000064886 1 

ILMN_1775235 Perfect 3899 AFF3 ENSG00000144218 1 

ILMN_1796059 Perfect**** 91074 ANKRD30A 

 

1 

ILMN_1835913 Bad NA CD108903 NA 1 

ILMN_1673320 Perfect 374864 C18orf34 ENSG00000166960 1 

ILMN_1766914 Perfect 4239 MFAP4 ENSG00000166482 1 

ILMN_1663390 Perfect 991 CDC20 ENSG00000117399 1 

ILMN_1769849 Perfect 84072 HORMAD1 ENSG00000143452 1 

ILMN_1773006 Perfect 2167 FABP4 

 

1 

ILMN_1660114 Bad 22915 MMRN1 ENSG00000138722 1 

ILMN_2108735 Perfect 1917 EEF1A2 ENSG00000101210 1 

ILMN_1726720 Perfect 51203 NUSAP1 ENSG00000137804 1 

ILMN_1753196 Perfect 9232 PTTG1 

 

1 

ILMN_1815184 Perfect 259266 ASPM ENSG00000066279 1 

ILMN_1689111 Perfect 6387 CXCL12 ENSG00000107562 2 

ILMN_1715991 Perfect 8436 SDPR ENSG00000168497 2 

ILMN_1716407 Perfect 8470 SORBS2 ENSG00000154556 2 

ILMN_1655915 Perfect 4320 MMP11 ENSG00000099953 2 

ILMN_1722489 Perfect 7031 TFF1 ENSG00000160182 2 

ILMN_1684217 Perfect 9212 AURKB 

 

2 

ILMN_1888901 Perfect*** NA BX106902 NA 2 

ILMN_1695658 Perfect 10112 KIF20A ENSG00000112984 2 

ILMN_2334359 Perfect 2674 GFRA1 ENSG00000151892 2 

ILMN_1726204 Perfect 11341 SCRG1 ENSG00000164106 2 

ILMN_1700337 Perfect**** 10024 TROAP 

 

2 

ILMN_2174805 Bad 146894 CD300LG ENSG00000161649 2 

ILMN_1651282 Perfect 1308 COL17A1 ENSG00000065618 2 

ILMN_1696243 Perfect 401236 FLJ23152 NA 2 

ILMN_1716925 Perfect 161835 FSIP1 ENSG00000150667 2 

ILMN_2246956 Perfect 596 BCL2 ENSG00000171791 3 

ILMN_1725276 Perfect**** 260436 C4orf7 

 

3 

ILMN_2092077 Perfect 5304 PIP ENSG00000159763 3 

ILMN_1789463 Perfect 5348 FXYD1 ENSG00000221857 3 

ILMN_1764309 Perfect 124 ADH1A ENSG00000187758 4 

ILMN_1685916 Perfect 11004 KIF2C ENSG00000142945 4 

ILMN_2310814 Perfect 4137 MAPT ENSG00000186868 5 

ILMN_2382942 Perfect 771 CA12 ENSG00000074410 5 

ILMN_1695397 Perfect 388743 CAPN8 ENSG00000203697 5 
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ILMN_1779416 Perfect 57758 SCUBE2 ENSG00000175356 5 

ILMN_1668766 Perfect 54763 ROPN1 ENSG00000065371 6 

ILMN_1770678 Perfect 84733 CBX2 ENSG00000173894 6 

ILMN_1789507 Perfect 1301 COL11A1 ENSG00000060718 6 

ILMN_1729216 Perfect 1410 CRYAB ENSG00000109846 6 

ILMN_1713952 Perfect 55765 C1orf106 ENSG00000163362 6 

ILMN_1692938 Perfect 29968 PSAT1 ENSG00000135069 8 

ILMN_1677920 Perfect 4057 LTF ENSG00000012223 8 

ILMN_1666845 Perfect 3872 KRT17 ENSG00000173801 8 

ILMN_1693218 Perfect 419 ART3 ENSG00000156219 8 

ILMN_1863962 Bad NA BX116033 NA 9 

ILMN_1683450 Perfect 113130 CDCA5 ENSG00000146670 9 

ILMN_1795342 Perfect 79083 MLPH ENSG00000115648 9 

ILMN_1809099 Perfect 90865 IL33 ENSG00000137033 9 

ILMN_1723684 Perfect 2532 DARC ENSG00000213088 9 

ILMN_1811387 Perfect 7033 TFF3 ENSG00000160180 10 

ILMN_1773459 Perfect 6664 SOX11 ENSG00000176887 10 

ILMN_1729801 Perfect 6279 S100A8 ENSG00000143546 10 

ILMN_1803236 Perfect 9635 CLCA2 ENSG00000137975 10 

ILMN_2301083 Perfect**** 11065 UBE2C 

 

10 

ILMN_2149164 Perfect 6422 SFRP1 ENSG00000104332 10 

ILMN_2161330 Perfect 25803 SPDEF ENSG00000124664 10 

ILMN_1688071 Perfect 9 NAT1 ENSG00000171428 10 

ILMN_1728787 Perfect 155465 AGR3 ENSG00000173467 10 

ILMN_1689146 Perfect 2568 GABRP ENSG00000094755 10 

ILMN_1714730 Perfect**** 11065 UBE2C 

 

10 

ILMN_1785570 Good 203328 SUSD3 ENSG00000157303 10 

ILMN_1786720 Perfect**** 8842 PROM1 ENSG00000007062 10 

ILMN_2161820 Good 219970 GLYATL2 ENSG00000156689 10 

ILMN_1678535 Perfect 2099 ESR1 ENSG00000091831 10 

ILMN_1766650 Perfect 3169 FOXA1 ENSG00000129514 10 

ILMN_1738401 Perfect 2296 FOXC1 ENSG00000054598 10 

ILMN_1728934 Perfect 9055 PRC1 ENSG00000198901 10 

ILMN_1898518 Perfect 2674 GFRA1 ENSG00000151892 10 

ILMN_1810978 Bad 118430 MUCL1 ENSG00000172551 10 

ILMN_1740609 Perfect 6358 CCL15 ENSG00000161574 10 

Note: Probe App. – Probe Appearance. More Details on the annotation in Dunning et al. (2010). 
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Supporting Information – Figure 5.4 

Figure 5.4 Mean Final Classifier Performance, as measured by Fleiss' κ against the final 

ensemble learning labels of all samples, across the 10 different refinement runs 

Classifiers are used with their default values, and experiments are repeated 10 times with 

different random seeds to provide an estimate of true value. The average mean performance of 

each classifier is shown in this figure. As can be observed, all classifiers attain a Kappa value 

greater than 0.89, which is considered an almost perfect agreement.  
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Supporting Information – Figure 5.5 

Figure 5.5 Evolution of performance of classifiers along iterations in a typical refinement 

run. The κ values are measured against final ensemble learning labels 

During the course of the refinement iterations, agreement among classifiers increases 

significantly, and more importantly, in a consistent manner. The evolution of the agreement, as 

measured by κ versus the final set of labels, for a typical iteration run. 
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Supporting Information – Text 5.1 

Text 5.1 The MST-kNN clustering approach employed to the METABRIC data set. 

 

Proximity graphs, instead of common methods of hierarchical clustering, have revealed hidden 

structures present in robust data sets. A combination of then is even more powerful (Jain et al., 

1999). Accordingly, González-Barrios and Quiroz (2003) suggested a graph partition algorithm 

based on an intersection of two proximity graphs: Minimum Spanning Tree (MST) and k 

Nearest Neighbors (kNN). The modification on the MST-kNN clustering algorithm further 

introduced by Inostroza-Ponta (2008) is also able to deal with complex systems, establishing 

connection between close objects in a connective tree. This approach was then applied on the 

METABRIC data set to cluster related samples based on their gene expression profile. The 

major goal is to highlight sets of samples that cluster together according to molecular 

similarities and phenotypical characteristics – using the square root of Jensen Shannon 

divergence (Berretta & Moscato, 2010) – on breast cancer samples.  

All breast tumours (997 from Discovery and 995 from Validation) and control samples 

(144) were independently clustered and compared against the original METABRIC PAM50 

labels (Figure 5.6), the refined labels proposed in this chapter (Figure 5.7), and the novel 

IntClust classification defined by Curtis et al. (2012) (Figure 5.8). Labels were considered for 

relevant comparisons in terms of reliability and accuracy of breast cancer classification. The 

cluster analysis indicated that the five intrinsic subtypes have clear similarities based on their 

gene expression profiles, and are clustered together, but separated from controls. Noteworthy, 

the refined labels (Figure 5.7) show a more consistent distribution of the refined labels than the 

PAM50 subtypes, in (Figure 5.6), across samples in the METABRIC data set. Although these 

labels are comparable with the MST-kNN clustering approach, there is a visual inconsistency on 

the classes obtained using hierarchical clustering and MST-kNN approach.   

Overall, there are shared features connecting luminal A and B samples; revealing the 

close relationship between tumours with common origin. Patients basal-like, on the other hand, 

are clearly distinct from other breast cancer subtypes and appear clustered together. IntClust 

labels (Figure 5.8), however, are not comparable with this approach due to the means of 

stratification based not only on the gene expression profile but also on the genomic aberrations 

across patients (more details below). Undoubtedly, other clustering approaches and 

complementary molecular information will contribute to improve the breast cancer subtypes 

classification and the disease understanding. 

The varied molecular landscape of breast carcinomas is not entirely captured using 

histopathological or gene expression analysis (Dawson et al., 2013). An expanded portrait has 
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been obtained from studying the spectrum of copy number aberrations underlying the genomic 

architecture associated with intrinsic subtypes (Curtis et al., 2012). The integrated analysis of 

both genomic and transcriptomic METABRIC data sets revealed the impact of genomic 

aberrations on the transcriptomic set. Clustering analysis of the integrated data showed the 

existence of 10 molecular subgroups, the 10 integrative clusters (IntClust 1-10) (Dawson et al., 

2013). In this analysis, we provide an overview of the 10 subtypes in comparison to the 

classification using the PAM50 labels (Table 5.7) and summarise the new insights gained with 

the refined labels (Table 5.8). The later classification using the iterative approach has defined 

subtypes in better agreement with the recently proposed IntClusts than the original PAM50 

labels. 
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Supporting Information – Figure 5.6 

Figure 5.6 MST-kNN clustering, coloured according to the original METABRIC labels 

defined by the PAM50 method 

The MST-kNN clustering was used to group samples based on the similarities of their gene 

expression profile, establishing connections in a connective tree. The PAM50 labels were 

considered for further comparisons of reliability and accuracy of breast cancer classification. 
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Supporting Information – Figure 5.7 

Figure 5.7 MST-kNN clustering, coloured according to the refined labels using an iterative 

process 

The MST-kNN clustering was used to group samples based on the similarities of their gene 

expression profile, establishing connections in a connective tree. The refined labels were 

considered for further comparisons of reliability and accuracy of breast cancer classification. 
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Supporting Information – Figure 5.8 

Figure 5.8 MST-kNN clustering, coloured according to the IntClust classification proposed 

by Curtis et al. (2012) 

The MST-kNN clustering was used to group samples based on the similarities of their gene 

expression profile, establishing connections in a connective tree. The IntCl;usts labels were 

considered for further comparisons of reliability and accuracy of breast cancer classification. 
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Supporting Information – Table 5.7 

Table 5.7 The percentage of PAM50 labels matching integrative clusters (IntClust 1-10) in 

the METABRIC study 
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Note: The comparison of molecular subtypes in this table 

follow the approach published by Dawson et al (2013).   
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Supporting Information – Table 5.8 

Table 5.8 The percentage of Refined labels matching integrative clusters (IntClust 1-10) in 

the METABRIC study 
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Note: The comparison of molecular subtypes in this table 

follow the approach published by Dawson et al (2013).   
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Supporting Information – Text 5.2 

Text 5.2 This text reviews the ten integrative clusters, underlying differences in the disease 

outcome 

 

IntClust 1  

Integrative cluster 1 is predominantly classified into the luminal B (65% PAM50 vs 

76.3% Refined) intrinsic subtype. It comprises a significant proportion of higher proliferation 

ER-positive/luminal B tumours, and are characterised by relatively high levels of genomic 

instability (Curtis et al., 2012). Genomic and transcriptomic features of IntClust 1 involve the 

amplification of the 17q23 locus and the highest prevalence of GATA3 mutations. Amplification 

of 17q23 is associated with cis-driven overexpression of several adjacent genes including 

RPS6KB1, PPM1D, PTRH2 and APPBP2 (Dawson et al., 2013). These genes play an important 

role as key genomic drivers within the subtypes for disease stratification. 

 

IntClust 2 

Integrative cluster 2 is comprised of both luminal A (34.7% PAM50 vs 30% Refined) 

and luminal B (50% vs 60%) tumours. Remarkably, this subgroup has the worst prognosis 

among all ER-positive tumours (Dawson et al., 2013). The characteristic feature of IntClust 2 is 

the amplification of the 11q13/14 regions, containing several known and putative driver genes 

involved in breast cancer, including CCND1, EMSY, RSF1, C11orf67 and PAK1. Patients in this 

subgroup have amplifications involving multiple genes, suggesting a complex network where 

the combinations of drivers are likely to be more important than a single gene. The enrichment 

of genes involved in cell-cycle regulation, as exemplified by CCND1 support the association 

with aggressive tumour behaviour in this cluster. 

 

IntClust 3 

Integrative cluster 3 is defined primarily by luminal A (66.3% PAM50 vs 71.2% 

Refined) tumours. Individuals within this subtype show small size, low-grade tumours and a 

low rates of regional lymph-node involvement; and the best prognosis among all the 10 

IntClusts  (Dawson et al., 2013). Identifying this cluster, with the majority of luminal A intrinsic 

subtype, is relevant as the patients usually respond to common hormonal therapy. Tumours, 

overall, show high frequency of PIK3CA, CDH1 and RUNX1 mutations. 
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IntClust 4 

Integrative cluster 4 incorporates a mixture of intrinsic subtypes, including ER-posive 

and negative samples. Similarly to IntClust 3, IntClust4 is characterised by low levels of 

genomic instability. However, tumours within this subgroup show evidence of lymphocytic 

infiltration and deletions in T-cell receptor loci – on chromosomes 7 (TRG) and 14 (TRA) –, 

linked to somatic rearrangements in the infiltrating T cells. The presence of lymphocytes in 

these tumours are associated to a cancer immunological response that may potentially be 

exploited in the development of future therapeutics (Dawson et al., 2013).  

 

IntClust 5  

Integrative cluster 5 is associated to HER2 (ERBB2) amplification, including mainly 

HER2-enriched ER-negative (56.5% PAM50 vs 61.5% Refined) and luminal B ER-positive 

(17.3% vs 32.1%) tumours. The amplification of the HER2 locus, at 17q12, is frequently 

observed, as well as TP53 mutations and intermediate levels of genomic instability. Patients 

within this group show the worst survival in 10 years, high-grade tumours and involvement of 

regional lymph nodes (Dawson et al., 2013). Accordingly, these individuals might benefit from 

HER2-related targeted therapy. 

 

IntClust 6  

Integrative cluster 6 is a distinct cluster of ER-positive tumours, comprising both 

luminal A (27.9% PAM50 vs 32.5% Refined) and luminal B (50% vs 66.3%) cases. In this 

subtype, the defining molecular features are the low levels of PIK3CA mutations and the 

amplification of the 8p12 locus (Dawson et al., 2013). This region is commonly amplified in 

ER-positive breast cancers and encompasses the oncogenic driver ZNF703, involved in cancer 

cell differentiation, proliferation and invasion (Holland et al., 2011). The identification of more 

aggressive tumours (ER-positive/HER2-negative) within IntClust 6 may improve the disease 

management and the stratification of outcomes. 

 

IntClust 7 

Integrative cluster 7 is comprised predominately of ER and PR-positive luminal A 

(64.2% PAM50 vs 64.9% Refined) and luminal B (21.8% vs 31.4%) cases. Individuals within 

this cluster present low-grade, well-differentiated tumours; and the second best prognosis 

among all subgroups. Copy number aberrations in IntClust 7, differentiating from IntClust 3, are 
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specific 16p gain and 16q loss, as well as a higher frequency of 8q amplification (Dawson et al., 

2013). Notably, tumours also show the highest frequency of MAP3K1 and CTCF mutations 

across all clusters.  

 

IntClust 8  

Integrative cluster 8 is predominantly composed by ER-positive tumours of luminal A 

(64% PAM50 vs 29.7% Refined) and B (66.2% vs 31.4%) subtypes. Likewise IntClust 7, 

patients within IntClust 8 also present low-grade, well-differentiated tumours, and good 

prognosis. This subgroup, however, is characterised by 1q gain/16q loss that corresponds to a 

common unbalanced translocation event in Invasive Ductal Carcinomas (Russnes et al., 2010). 

High levels of PIK3CA, GATA3 and MAP2K4 mutations are also observed. Tumours previously 

grouped with the luminal A subtype label, in fact, are separated into three distinct IntClusts 

(IntClust 3, 7 and 8), containing independent genomic aberrations (Dawson et al., 2013).  

 

IntClust 9  

Integrative cluster 9 is a mixture of intrinsic subtypes, with a greater number of ER-

positive luminal B (47.9% PAM50 vs 69.5% Refined) intrinsic subtype. Likewise IntClust 6, 

tumours in IntClust 9 have an intermediate prognosis and high levels of genomic instability. The 

main molecular characteristics within IntClust 9 include 8q alterations and 20q amplification. 

On chromosome 8p, PP2R2A deletions affect several signal transduction pathways, common in 

luminal B intrinsic subtype (Dawson et al., 2013). Additionally, mutations and methylation 

silencing of PPP2R2A have been reported in other solid malignancies (McConechy et al., 

2011), suggesting the possible role of this gene as an important tumour suppressor. 

 

IntClust 10  

Integrative cluster 10 embraces mostly triple-negative tumours of basal-like (89.4% 

PAM50 vs 82.2% Refined) intrinsic subtype. Despite displaying intermediate levels of genomic 

instability, these tumours have the highest rates of TP53 mutations. IntClust 10 is characterised 

by aberrations involving 5q loss and gains at 8q, 10p and 12p. In particular, 5q deletions are 

associated with the basal-like subgroup by modulating the landscape of genomic instability 

within these tumours. In this region, important genes regulate the cell-cycle, DNA repair and 

apoptosis, such as AURKB, BCL2, BUB1, CDCA3, CDCA4, CDC20, CDC45, CHEK1, FOXM1, 

HDAC2, IGF1R, KIF2C, KIFC1, RAD51 and UBE2C (Dawson et al., 2013). The transcriptional 

changes observed within this subgroup are crucial to delineate the basal-like tumours, usually 
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less responsive to chemotherapy and sensitive to neoadjuvant chemotherapy (Banerjee et al., 

2006). 

 

 

Supporting References 

 

Banerjee, S., Reis-Filho, J. S., Ashley, S., Steele, D., Ashworth, A., Lakhani, S. R., et al. (2006). 

Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J. Clin. 

Pathol., 59(7), 729-735. 

Berretta, R., & Moscato, P. (2010). Cancer Biomarker Discovery: The Entropic Hallmark. PLoS 

One, 5(8), e12262. 

Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). 

The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel 

subgroups. Nature, 486(7403), 346-352. 

Dawson, S. J., Rueda, O. M., Aparicio, S., & Caldas, C. (2013). A new genome-driven 

integrated classification of breast cancer and its implications. EMBO J., 32(5), 617-628. 

González-Barrios, J. M., & Quiroz, A. J. (2003). A clustering procedure based on the 

comparison between the k nearest neighbors graph and the minimal spanning tree. Stat 

Probabil Lett, 62(1), 23-34. 

Holland, D. G., Burleigh, A., Git, A., Goldgraben, M. A., Perez‐Mancera, P. A., Chin, S. F., et 

al. (2011). ZNF703 is a common Luminal B breast cancer oncogene that differentially 

regulates luminal and basal progenitors in human mammary epithelium. EMBO Mol. 

Med., 3(3), 167-180. 

Inostroza-Ponta, M. (2008). Thesis: An integrated and scalable approach based on 

combinatorial optimization techniques for the analysis of microarray data. The 

University of Newcastle.    

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data Clustering: A Review. ACM Computing 

Surveys, 31(3). 

McConechy, M. K., Anglesio, M. S., Kalloger, S. E., Yang, W., Senz, J., Chow, C., et al. 

(2011). Subtype‐specific mutation of PPP2R1A in endometrial and ovarian carcinomas. 

The Journal of pathology, 223(5), 567-573. 

Russnes, H. G., Vollan, H. K. M., Lingjærde, O. C., Krasnitz, A., Lundin, P., Naume, B., et al. 

(2010). Genomic architecture characterizes tumor progression paths and fate in breast 

cancer patients. Sci. Transl. Med., 2(38), 38ra47-38ra47. 

 



Bioinformatics in Breast Cancer Chapter 6 

 

154 

  



Bioinformatics in Breast Cancer Chapter 6 

 

155 

 

 

 

 

 

 

CHAPTER 6 

 

6. META-FEATURES FOR PREDICTING BREAST 

CANCER INTRINSIC SUBTYPES 

 

There are a number of different ways of dealing with complex high dimensional data sets in 

breast cancer. As an alternative to the iterative approach for predicting subtypes (Chapter 5), 

Chapter 6 introduces a systematic methodology for distinguishing samples across the intrinsic 

groups by looking at pairwise probes, termed meta-features, at a minimum template. This 

method is based on mathematical modelling, feature selection methods and data mining. The 

computational framework is motivated by the widespread interest in conducting and reporting 

robust methods for building accurate predictor models. The content is structured as a 

methodology article, submitted to Genomics, Proteomics & Bioinformatics
8
, and here divided 

into sections 6.1 Introduction,6.2 Methods, 6.3 Results and Discussion, 6.4 References and 

6.5 Supporting Information.  This novel strategy underscores applied research in breast cancer 

for leveraging the utility of pairwise probes for covering both the intrinsic signature and the 

subtype prediction. It also delineates molecular imbalances across subtypes and supports the 

breast cancer group-based definition in the clinical setting. 

  

                                                      
8
 Milioli, H.H.; Riveros, C.; Vimieiro, R.; Tishchenko, I.; Berretta, R.; Moscato, P. Meta-features 

modelling gene expression imbalances: an innovative strategy for breast cancer subtype 

prediction. Manuscript submitted to Genomics, Proteomics & Bioinformatics. 
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6.1 Introduction 

 

Microarray technologies and gene expression profiling have been widely explored in medical 

research. In the direction of developing useful tools to delineate the breast cancer behaviour, 

researchers have published a number of predictive models based on multi-gene signatures. The 

computational methods have shown gene expression values strongly correlated to clinical 

prognosis (Fan et al., 2011; Loi et al., 2008), disease progression (Seoane et al., 2014; Venet et 

al., 2011; Wang et al., 2005) and patient survival (Chang et al., 2005; Naderi et al., 2006). The 

main purpose is to either inform or anticipate the patient's outcome, and guide treatment 

decision-making (van't Veer et al., 2002; van De Vijver et al., 2002). Mammaprint® (Agendia, 

Huntington Beach, CA) and Oncotype DX®  (Genome Health Inc, Redwood City, CA), two 

commercial assays, are standard examples of genome supervised predictors (Buyse et al., 2006; 

Glas et al., 2006; S. Paik et al., 2004). Based on the Amsterdam 70-gene signature, Mammaprint 

was designed to estimate the likelihood of distant recurrence in the five years following 

diagnosis. This investigation is also decisive for guiding systemic adjuvant therapy (Drukker et 

al., 2014; Kok et al., 2012). Similarly, Oncotype DX uses a panel of 21 genes to determine the 

risk of metastasis in women with early-stage hormone oestrogen receptor (ER) positive breast 

cancer. The test is assessed through the Recurrence Score and outlines the benefits of 

chemotherapy (Albain et al., 2010; Chen et al., 2013; Soonmyung Paik et al., 2006). 

Gene expression cohorts were imperative to classify breast cancers into intrinsic 

subtypes: luminal A, luminal B, HER2-enriched, normal-like and basal-like (J. I. Herschkowitz 

et al., 2007; Hu et al., 2006; Perou et al., 2000; Prat et al., 2010; Sørlie et al., 2001; Sørlie et al., 

2003). The new concept underlying subtype prediction is based on risk models that incorporate 

molecular signatures shared among tumours with analogous behaviour. In 2009, Parker et al. 

(2009) proposed a Single Sample Predictor (SSP) model to classify tumour subtypes according 

to the correlation with Nearest Shrunken Centroids (NSC) (Tibshirani et al., 2002). The so-

called PAM50 method uses a 50 gene set as centroids. These genes are mainly involved in cell 

proliferation and are highly correlated with breast cancer subtypes. In the same direction, 

another research group attempted to simplify the subtypes prediction by using a Subtype 

Classification Model (SCM) based on three key genes: oestrogen receptor 1 (ESR1), erb-b2 

receptor tyrosine kinase 2 (ERBB2), and aurora kinase A (AURKA) (Haibe-Kains et al., 2012).  

Overall, the main goal of the disease subtyping is to define sets of patients more likely 

to respond to selective drugs in a group-based tailored therapy. The substantial impact of 
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predictor models in breast cancer research have brought new insights to translational science 

and applied medicine, and are of unquestionable value to clinical practice. Even though 

different gene sets are used for breast cancer prognostication, there is a significant agreement in 

the outcome predictions for individual patients (Fan et al., 2006). On the other hand, subtyping 

methods showed only a moderate agreement between sample labelling across distinct studies 

(Weigelt; Mackay; et al., 2010), besides intrinsic errors (Ebbert et al., 2011) and independent 

predictive value (Prat et al., 2012). The weaknesses of these methods lie in the analysis of 

multiple data sources and the distinct approaches. For instance, important issues may arise with 

independent sample collection, gene expression analysis and microarray technology. Hence, a 

range of gene lists of different size and shape are selected (Popovici et al., 2010). Stringent 

standardisation of data sets and methodologies are therefore required to improve breast cancer 

classification and subtype prediction. Novel strategies are also required for a robust analysis of 

complex data sets before translating medical research into clinical application. 

In this study, we designed a novel systematic approach to define a robust pairwise set 

able to predict the breast cancer intrinsic subtypes. We hypothesise that combined gene 

expression data brings more reliable information than single gene assessments. By expanding 

the original METABRIC transcriptomic data set, we compute the relative pairwise differences 

of gene expression levels for all 48803 probes in each sample. The pairwise differences are 

henceforth named meta-features. The main strategy relies on mathematical modelling, feature 

selection and data mining approaches, making use of the following well-established methods: 

CM1 score, (α,β)-k-Feature set, and ensemble learning. Statistical measures (Cramer's V, 

Average sensitivity, Fleiss' kappa, and Adjusted Rand Index) are used to define the association 

between the original subtype labels and predicted ones. The applied research stresses pairwise 

intrinsic signature to explain both the genomic imbalance and the subtype prediction in breast 

cancer. 

 

 

6.2 Methods 

 

6.2.1 Ethics Statement and Data Description  

Samples in the METABRIC data set (Curtis et al., 2012) were assigned into the five 

intrinsic subtypes (luminal A, luminal B, HER2-enriched, normal-like and basal-like) according 
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to the PAM50 method (Parker et al., 2009). Due to some inconsistencies in the original 

labelling, the subtypes used in this report follow the recent assignment provided by Milioli et al. 

(2015). Samples were partitioned back in the two original METABRIC subsets: Discovery (855 

samples) and Validation (831 samples), respectively referred to as training and test sets in our 

analysis. Inconsistent samples (306) were discarded.  

 

 

6.2.2 Study Design and Computing Resources 

In this study, we propose a novel approach based on mathematical modelling, feature 

selection and data mining to improve the breast cancer subtype prediction. Based on pairwise 

expression values, we first create a robust matrix of meta-features – defined as the difference 

between pairs of probes – from the METABRIC data set. The mathematical operation, thus, 

embeds additional information to this data set. Using the computed matrix, we apply the feature 

selection methods, CM1 score and (α,β)-k-Feature set, to extract the most representative 

biomarkers for each subtype. Additionally, the quality of the meta-features selection is assessed 

using a set of classifiers from Weka, followed by the statistical analysis. All steps are shown in 

Figure 6.1 and detailed in the remainder of this section. 

 

Generating meta-features.  

 First, we computed the absolute difference between expression values of all possible 

pairs of probes from the original set of 48803, for each sample. This results in a robust matrix of 

new meta-features containing useful new information. The matrix is symmetric since the 

absolute difference is a symmetric operator (|F1 - F2| equal to |F2 - F1|). Each meta-feature is a 

combination of individual features, so that the simple mathematical model attributes a particular 

weight or function to the pair (Rocha de Paula et al., 2011). Using the pairwise strategy, we 

highlight the relationship between probes and explicit changes in tumour behaviour across 

groups of patients. The objective is to scrutinise the molecular patterns correlated to subtypes. 
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Figure 6.1 Summary systematic approach 

The process is initialised with the new labels recently attributed to the METABRIC study, based 

on PAM50 genes and ensemble learning (Milioli et al., 2015). A robust matrix is generated after 

computing the absolute difference of pairwise probes for all samples. The CM1 score was used 

to select the top 50 highly discriminative meta-features for each subtype, resulting in a filter of 

250. From this set of meta-features, 13 represent the size of the smallest subset able to 

discriminate the sample subtypes according to the (α,β)-k-Feature set. These meta-features are 

then used to train the classifiers in the ensemble learning. The labels in the validation set are 

predicted using the models built in the discovery set (10-fold cross-validation), in a training-test 

setting. The predictive power of the classifiers is determined by a range of statistical measures. 

 

 

Meta-feature selection using CM1 score and (α,β)-k-Feature set.  

 The second step involves two well-established methods, the CM1 score (Marsden et al., 

2013; Milioli et al., 2015) and (α,β)-k-Feature set (Cotta & Moscato, 2003; Cotta et al., 2004; 

Gómez-Ravetti et al., 2009), to define the most representative probes. The CM1 score 

(described in Chapter 4, Equation 4.1) is a supervised approach used to rank the features (in 

this case, the meta-features) according to their discriminative power for each intrinsic subtype or 

class. For computing the CM1 score we use the new labels provided by Milioli et al. (2015). 

Samples from the five intrinsic subtypes were alternately taken as the target set. In each case, 

the CM1 score was computed for all meta-features. The meta-features were then ranked from 
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the maximum to the minimum CM1 values. Ultimately, we selected 50 meta-features best 

ranked for each intrinsic subtype, comprising a total of 250. This number was arbitrarily defined 

for the first filtering. Although there is an overlap between meta-features across subtypes, we 

have maintained the denomination of 250 meta-features.  

The (α,β)-k-Feature set problem is a feature selection approach based in combinatorial 

optimisation (Supporting Information – Text 1). The rationale behind this supervised method 

is to find the minimum subset of features that better discriminates two classes of samples by 

solving a combinatorial optimisation problem. For a given instance, the decision problem aims 

to find a k feature set in which every pair of samples from different classes can be “explained” 

by at least α features; and any pair of samples from the same class (identical values) by at least β 

features The process requires finding a minimum cardinality set of features that satisfies the 

requirement of being a k-Feature Set. The optimisation version of this problem has been 

formulated as an integer programming model (Berretta et al., 2008; Berretta et al., 2007). In this 

study, we endeavour to select the essential signature, from the list of 250 meta-features that is 

able to explain the breast cancer intrinsic subtypes. 

 

 

Building classification models to assess the quality of meta-features.  

 In the third step, we used several machine learning algorithms to build a classification 

model based on the former set of representative meta-features. This assay relies on an ensemble 

of 22 classifiers from the Weka software suite (Witten et al., 2016). Each of the classifiers is 

trained with a subset of the data containing the list of meta-features for all samples in the 

discovery set in a 10-fold cross-validation setting, which involves randomly partitioning the 

original data set into 10 equally sized subsets. Each subset in turn is left out and the learning 

method is trained on the union of all the remaining subsets. The results of all 10 judgements, 

one for each member of the data set, are averaged, and the average represents the final error 

estimate. The labels in the validation set are then predicted using the models built in the 

discovery set, in a training-test setting. The purpose of performing ensemble learning is to 

assess the quality of the meta-features for the prediction of breast cancer intrinsic subtypes. In 

this context, the power and robustness of a set of classifiers has proven to be far superior than 

single predictors (Gómez-Ravetti & Moscato, 2008; Milioli et al., 2015). 
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6.2.3 Statistical Analysis 

 Statistical measures are used to assess the consistency of the subtype predictions. The 

quality of meta-features is estimated according to Cramer's V statistic. The consensus of sample 

labelling across different methods is defined by the popular interrater reliability metric Fleiss' 

kappa. This statistic is calculated to gauge the agreement, not only among classifiers trained 

with the set of meta-features, but also between the initial METABRIC subtype labels (Milioli et 

al., 2015) and the labels assigned by the majority of classifiers. Finally, we performed the 

Adjusted Rand Index to quantify the agreement between samples that are either in the same 

class or in different classes after a given partition. The measures are detailed as follows: 

 

Cramer's V: measures the strength of association among variables of the rows and 

columns given a contingency table (Liebetrau, 1983). To calculate this metric, we 

assumed a r x c contingency table describing the association between the initial 

METABRIC labels and those predicted by the majority of classifiers using ensemble 

learning. More details in Chapter 4, Equation 4.2. 

 

Fleiss' kappa: defines the reliability of agreement among the labels defined by different 

classifiers trained using the meta-features; and between the initial METABRIC labels 

and new labels predicted based on ensemble learning (Fleiss, 1971; Fleiss et al., 2004). 

Assuming a r x c contingency table informing how many times each of the classes were 

assigned to each of the samples in the k different sample labelling. More details in 

Chapter 4, Equation 4.4. 

 

 Adjusted Rand Index: quantifies the similarity between two sample labelling. It is a 

version of the Rand index corrected for chance when the partitions are picked at random 

(Hubert & Arabie, 1985). More details in Chapter 4, Equation 4.5. 
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6.3 Results and Discussion 

 

6.3.1 Thirteen Meta-features Define Breast Cancer Intrinsic Subtypes  

In this study, we investigated one of the most comprehensive data sets in breast cancer, 

expanding the ~2000 samples and 48803 probes to build functional pairwise constructs. The 

proposed approach is robust with regard to the mathematical computation of all possible probe 

combinations. It provides further information on modelling meta-features to predict intrinsic 

subtypes. Our method differs from previous studies in many aspects. We search for co-

expression patterns whereas other groups have recognised individual gene levels to create 

molecular signatures for prediction. Moreover, we rely on a large data collection processed by 

METABRIC which is prominent in terms of microarray technology and genomic mapping. 

Here, we provide a transparent example of the manner in which a genomic-based predictor can 

be developed with significant detail and documentation to allow the process to be replicated by 

other researchers and in a range of fields. The results as follow introduce the utility of the 

information carried with the pairwise probes to improve the prediction of breast cancer intrinsic 

subtypes. 

 Defining pairwise patterns across intrinsic subtypes, however, does not mean that the 

probes are directly related in common network. Each individual transcript can be viewed as 

separate molecular underpinning, potentially independent in the mechanistic biology or as major 

system regulators. For instance, the first filter based on the CM1 score resulted in 250 meta-

features (50 for each subtype), ranked according to the highest values for each group. Some 

meta-features, however, are able to discriminate more than one subtype and appeared repeatedly 

connected with a range of other transcripts. Then, a total of 153 unique probes connected with 

the respective co-expressed pair is displayed in Figure 6.2. Remarkable genes, such as ESR1, 

FOXA1, KRT17, MLPH, SFRP1 and UBE2C were recognised as central among the pairwise 

probes across the five intrinsic subtypes in the METABRIC discovery set. These genes are well-

established in the literature as to their involvement with breast cancer progression and intrinsic 

subtypes (Bastien et al., 2012; McCafferty et al., 2009; Parker et al., 2009; Reis-Filho & 

Pusztai, 2011; Weigelt; Baehner; et al., 2010). Novel transcripts, however, appear naturally 

linked to these genes, pointing to genomic imbalances across the subtypes. We believe that the 

co-expressed related features indicate that a larger and more complex construct could be 

uncovered from the data in order to explain the molecular arrangement of this heterogeneous 

disease. 
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 The final set of 13 meta-features reflect the complementary selection based on (α,β)-k-

Feature set (Table 6.1). This filter simplifies the complexity of the intrinsic subtypes by 

selecting the essential pairs able to differentiate the subtypes. Accordingly, the 13 meta-features 

are able to explain why samples are assigned in the same class or in different classes. The heat 

maps (Figure 6.3) generated for the discovery and validation sets support the hypothesis that 

pairwise probes distinguish the five intrinsic groups. The pairwise expression levels define the 

plot in which rows represent the meta-features and columns represent the samples. Figure 6.4 

depicts the coordinated patterns characterising subtypes. This plot shows reduced variability 

outside the upper and lower quartiles in comparison to the analysis of individual features 

(Figure 6.5). The results, therefore, emphasise the usefulness of the information carried within 

the functional constructs, in a minimum set. For instance, we suggest only 13 meta-features (23 

features) to label the samples when the commercial PAM50 assay utilises a panel of 50 genes. 

On the other hand, our method introduces novel potential markers not previously considered to 

predict the breast cancer subtypes, such as: CSN3, GAS1, KIF20A, LAMC3, MAD2L1, NCAPG, 

NUSAP1, ROPN1B, SULT1C2P1, SPDEF, TBC1D9 and ZMYND10. 

 

 

Table 6.1 List of meta-features selected with CM1 score and (α,β)-k Feature set 

Probe IDs  RefSeqGene 

ILMN 1792400 - ILMN 1766650 CSN3 - FOXA1 

ILMN 1668766 - ILMN 1703891 ROPN1 - TBC1D9 

ILMN 1689146 - ILMN 2161330 GABRP - SPDEF 

ILMN 1678720 - ILMN 1678535 SULT1C2P1 - ESR1 

ILMN 2125763 - ILMN 1683450 ZMYND10 - CDCA5 

ILMN 1726720 - ILMN 1786720 NUSAP1 - PROM1 

ILMN 2301083 - ILMN 2163723 UBE2C - KRT7 

ILMN 1777564 - ILMN 2149164 MAD2L1 - SFRP1 

ILMN 1688642 - ILMN 1747016 LAMC3 - CEP55 

ILMN 1651282 - ILMN 1695658  COL17A1 - KIF20A 

ILMN 1772910 - ILMN 1789507 GAS1 - COL11A1 

ILMN 1651282 - ILMN 2301083 COL17A1 - UBE2C 

ILMN 1688642 - ILMN 1751444 LAMC3 - NCAPG 
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Figure 6.2 Meta-features selected with the CM1 score in the METABRIC discovery set 

The image shows discriminative meta-features ranked with the CM1 score using 855 samples 

from the discovery set. Pairwise expression values were computed for each of the five intrinsic 

subtypes. Nodes represent the respective probe annotated and edges are the connections 

between features. The meta-feature connections are coloured according to the subtypes: luminal 

A (yellow), luminal B (green), HER2-enriched (purple), normal-like (blue), and basal-like (red). 
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Figure 6.3 Gene expression patterns of the 13 meta-features selected using the CM1 score 

and (α,β)-k-Feature set 

The heat map diagram exhibits 13 meta-features, in rows, and (A) 855 samples, in columns, in 

the discovery set and (B) 831 samples in the validation set. The images are based on meta-

features selected in the discovery set, ordered according to the gene expression similarity using 

memetic algorithm. Labels highlighted on top show the sample distribution according to the ER 

positive and negative status. It also illustrates the initial subtypes (Milioli et al., 2015) as follow: 

luminal A (yellow), luminal B (green), HER2-enriched (purple), normal-like (blue), and basal-

like (red). 
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Figure 6.4 Pairwise expression patterns across intrinsic subtypes in the METABRIC 

discovery and validation sets 

The box plot shows the pairwise expression patterns of 13 meta-features across the five breast 

cancer subtypes (luminal A, luminal B, HER2-enriched, normal-like and basal-like) in the 

discovery (855 samples) and validation (831 samples) sets. 
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Figure 6.5 Individual expression patterns across intrinsic subtypes in the METABRIC 

discovery and validation sets 

The box plot shows the expression patterns of 23 individual features across the five breast 

cancer subtypes (luminal A, luminal B, HER2-enriched, normal-like and basal-like) in the 

discovery (855 samples) and validation (831 samples) sets. 
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6.3.2 An Ensemble Learning Approach Validates the Quality of Meta-

features for Predicting Subtypes 

An ensemble learning based on 22 classification models was performed to further 

evaluate the quality of the 13 meta-features for predicting breast cancer intrinsic subtypes. 

Several statistical measures were computed to assess the consistency of our analysis: Cramer's 

V, Fleiss' kappa and Adjusted Rand Index. The results of each of these underlying metrics are 

described below. This step basically defines the reliability of the subtype labels assigned by the 

majority of the classifiers when compared to the initial METABRIC labels proposed by Milioli 

et al. (2015). 

 

Cramer's V statistic reveals great overall performance of independent classification models. 

Cramer's V statistic was used to compute the performance of the ensemble learning 

using the meta-features as an input in the training (discovery) and test (validation) sets. It 

measures the strength of association between two labelling given a contingency table (Table 

6.2). In this case, rows represent the initial METABRIC labels and columns represent the 

subtypes assigned by the majority of the classifiers in the ensemble. The Cramer's V statistic 

showed in Table 6.3 determines an average association of 0.91 ± 0.03 and 0.91 ± 0.03 in the 

discovery and validation sets respectively. Our results suggest a strong association between 

initial and predicted labels. The high values obtained in this study indicate that the proposed 

‘functional constructs’ or meta-features together with an ensemble learning have great potential 

to predict the breast cancer subtypes. Correct assignments lead to a more precise prognostic as 

per low or high cancer-related genes expression and support clinical decision-making.  

 

Table 6.2 Contingency tables for predicted labels using ensemble learning trained with 13 

meta-features Discovery set Validation set 

 Discovery set Validation set 

 LA LB H2 NL BL LA LB H2 NL BL 

LA 389 9 1 1 0 344 17 0 1 1 

LB 10 232 0 0 0 9 176 3 0 0 

H2 0 0 94 1 1 0 0 95 0 0 

NL 0 0 0 16 0 0 0 0 41 0 

BL 0 0 1 1 99 0 0 2 2 140 

Note: Rows contain the new sample labels in METABRIC (Milioli et al., 2015), while columns contain 

labels assigned by the majority of classifiers using the 13 meta-features. In this table, LA corresponds to 

luminal A, LB luminal B, H2 HER2-enriched, NL normal-like, and BL basal-like breast subtype. 
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Table 6.3 Performance of 22 Weka classifiers on predicting labels in the 

METABRIC discovery and validation sets 

Cramer’s V 

Type Classifier Discovery Validation 

bayes  BayesNet 0.93 0.93 

 NaiveBayes 0.90 0.91 

 NaiveBayesUpdateable  0.90 0.91 

Functions Logistic 0.94 0.92 

 SimpleLogistic  0.95 0.94 

 SMO 0.95 0.93 

Lazy IBk  0.94 0.91 

meta  AttributeSelectedClassifier  0.89 0.89 

 Bagging 0.88 0.90 

 ClassificationViaRegression  0.91 0.90 

 LogitBoost 0.93 0.94 

 MultiClassClassifier  0.88 0.90 

 RandomCommittee  0.94 0.94 

Rules DecisionTable  0.85 0.81 

 JRip  0.87 0.93 

 PART  0.92 0.91 

trees  HoeffdingTree  0.90 NA 

 J48  0.90 0.89 

 LMT  0.95 0.94 

 RandomForest  0.94 0.95 

 RandomTree 0.88 0.87 

 REPTree  0.86 0.85 

Average   0.91 0.91 

Standard Deviation   0.03 0.03 

 

 

 

 

 

The almost perfect agreement on sample labelling defined by the interrater reliability metric 

Fleiss' kappa. 

The Fleiss' kappa was computed to assess the agreement between classifiers and 

between samples labelling (Table 6.4). The first measurement indicates an overall agreement 

among individual classifiers of 0.957 for the discovery set and 0.941 for the validation set. The 

qualitative descriptions associated with intervals (described in Chapter 4) reveal an almost 
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perfect agreement for this case. The classifiers are attributing the same label to samples and it 

reflects more than would be expected by chance. 

 

 

Table 6.4 Fleiss' kappa values and Adjusted Rand Index for 

the discovery and validation sets 

Statistics Fκ (1)  Fκ (2)  ARI 

Discovery set  0.96 0.90 0.92 

Validation set  0.94 0.88 0.89 

Average  0.95 0.89 0.90 

Standard Deviation  0.01 0.02 0.02 

Note: ARI - Adjusted Rand Index; Fκ - Fleiss' kappa; (1) among 

classifiers; and (2) between refined METABRIC labels and predicted 

labels based on ensemble learning and meta-features. 

 

 

The second statistic using Fleiss' kappa compared initial and predicted subtypes 

assigned by the majority of classifiers using meta-features in both METABRIC data sets. The 

results were 0.90 and 0.88 for the discovery and validation sets, respectively, also defining an 

almost perfect agreement between labelling. These results therefore confirm the relationship 

between subtypes displayed in the contingency table (Table 6.2), with the highest numbers on 

the diagonal. Although the highly concordant assignment, there is a small number for which a 

discrepancy was observed between labels marked with this approach and the previous study. 

These assignments, however, refer to samples with molecular ambiguities across subtypes, 

especially luminal A and B. Luminal tumours have the same tissue origin and share constituent 

similarities (Polyak, 2011). 

 

The high agreement of predicted and initial labels according to the Adjusted Rand Index.  

In order to infer a more consistent statistical analysis, the agreement between the 

different sample labelling was further scrutinised using the Adjusted Rand Index (Table 6.4). 

The value calculated for the METABRIC discovery set was 0.92 and for the validation was 

0.89. These agreements between initial and predicted labels is significantly high. 
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6.3.3 Expanding Prediction Models Based on Microarray Data  

It is reasonable to assume that the usage of meta-features introduce a striking 

generalisation of the breast cancer gene expression profile. Yet, the new ‘constructs’ reveal 

hidden insights in data that help explaining the breast cancer subtypes. Our approach embraces 

the dynamicity of the genome and the pairwise imbalances of breast tumours to predict more 

accurately the molecular subtypes. Additionally, the meta-features analysis would lead to 

improvements in the evaluation of the disease, currently guided by clinical markers such as 

oestrogen and progesterone receptor (ER and PR) status, and HER2 amplification (Ambs, 2010; 

Weigelt & Reis-Filho, 2009). The association of predicted labels and clinical information in the 

METABRIC data is well described in Milioli et al. (2015) and support our findings, as the 

concordance with our approach is high. The approach match with the next generation of medical 

applications that aim at covering molecular panels able to explain group of patients that likely 

have similar prognosis and survival (Perou et al., 2010). 

Possible limitations of this study were also identified. Despite of the quality of the 

METABRIC data collection, there is a lack of matching between Illumina probes and other 

technologies, such as Affymetrix or Agilent, as per the annotation of (Dunning et al., 2010). The 

genetic background of each data set may result in distinct pairwise probes and independent 

molecular signatures for subtype assignments. Furthermore, the complexity imposed by 

different prediction models is another impediment to accurate subtype labelling. With advances 

in breast cancer research, there is a large number of flaws and errors in prediction methods to 

ascertain the sample subtype across different studies (Marchionni et al., 2013). However, there 

is no biological or mathematical reason to infer that a particular classification method is better 

than another since a range of distinct solutions is possible in the multidimensional gene 

expression space (Michiels et al., 2011). The last and major limitation is the uncertainty in the 

number of breast cancer subtypes (Jason I Herschkowitz et al., 2007; Hu et al., 2006; Lehmann 

et al., 2011). The true classification of the disease remains obscure, even though the description 

of the five intrinsic subtypes has had a substantial impact on the way how breast cancer is 

perceived. Prediction models and algorithms have, consequently, been affected by the 

fragmentary molecular taxonomy. 

In this study, we introduced a novel strategy for subtype prediction by expanding the 

analysis of the METABRIC transcriptome data set. Simple mathematical modelling combined 

with well-established methodologies of feature selection and data mining revealed striking 

pairwise genome imbalances. Representative meta-features across intrinsic subtypes showed an 

extensive predictive power on labelling samples, in agreement with the new recently corrected 
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METABRIC labels. One advantage of this approach is the usage of fewer genes in comparison 

to the commercial PAM50 assay. Furthermore, the authenticity of the current systematic 

approach and the accuracy of its results demonstrated that it is a promising tool to predict 

intrinsic subtypes. The simplicity of our model provides an opportunity for wide application 

using a variety of data types with potential for progressing to clinical applications. 
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6.5 Supporting Information 

 

Supporting Information – Text 6.1 

Text 6.1 The (α,β)-k-Feature Set Problem 

A combinatorial approach based on the mathematical model (α,β)-k-Feature Set Problem has 

been applied to select the best subset of features (a ‘signature’) able to discriminate two given 

classes of samples (Cotta et al., 2004). For the hypothetical matrix defined in Table 6.5, 

representing a microarray data set, consider a set of m samples (Sample 1, 2, 3, 4, 5 and 6), 

labelled for one of two possible classes, F or G. Each sample contains a boolean value for the n 

set of features (Gene A, B, C, D, and E); represented by 0 or 1, for False and True, respectively.  

 

Table 6.5 An example of numerical matrix with five features and six samples belonging 

to class F or G. 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

Gene A 0 0 0 0 1 0 

Gene B 1 1 1 1 0 1 

Gene C 1 1 1 0 1 0 

Gene D 1 1 1 1 0 0 

Gene E 0 0 1 0 0 0 

ClassLabel F F F G G G 

Five features (Genes A, B, C, D and E) and six samples (Samples 1, 2, 3, 4, 5, and 6). Data 

adapted from: Berretta et al. (2008). 

 

 

According to the data in Table 6.5, the decision problem k-Feature Set assesses if there 

is a set of k features (from the n set of features given) that can collectively explains each pair of 

samples belonging to the same class or to different classes (Figure 6.6, a and b). The problem 

can also be described using a graph; where we have a node for each feature, and a node for each 

pair of samples that belong to a different class and for each pair of samples that belong to the 

same class. Following the hypothetic data defined in Table 6.5, Gene A has the same value 0 for 

Sample 1 and Sample 2, both from the same class F; thus, an edge from node A to node (1,2) is 
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added in a bipartite graph. In this case, feature A covers or explains the pair of samples (1,2) 

belonging to the same class. A similar approach is then used to assess the pair of samples from 

different classes. Again, Gene A has a distinct value for Sample 1 and Sample 5, respectively, 

from classes F and G. Thus, there is an edge connecting both A and (1,5) nodes.    

The generalisation of explaining pairs of samples in the same class (β) or in different 

classes (α) leads to the (α,β)-k-Feature Set problem, with two positive valued parameters: α ≥ 1 

and β ≥ 0 (Cotta et al., 2004). The goal is to find a k feature set in which every pair of samples 

from different classes can be “explained” by at least α features (Figure 6.6, b); and any pair of 

samples from the same class (identical values) by at least β features (Figure 6.6, a). The 

optimisation version of this problem has been formulated as an integer programming model 

(Berretta et al., 2008). A feasible solution, for α = 1 and β = 1, is illustrated in (Figure 6.7).  

The method intends to draw more robust signatures that contribute towards an 

improvement of research approaches and clinical applications. Furthermore, the (α,β)-k-Feature 

Set Problem is widely applicable to a range of biological data, such as genomics (SNPs, CNAs 

and CNVs), transcriptomics (gene expression) and proteomics information (Gómez-Ravetti et 

al., 2009). 

 

 

 

Figure 6.6 Graph representing an instance of the (α,β)-k-Feature Set; as per the data 

defined in Table 6.5. 

In grey, are the nodes representing the pair of samples (p, q) from the same class; white nodes, a 

feature i; and blue nodes, the pair of samples (p, q) from different classes (F and G). Figure 

adapted from  Berretta et al. (2008).  
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Figure 6.7 Graph containing a feasible solution for the (α,β)-k-Feature Set problem; as per 

the data defined in Table 6.5. 

In grey, are the nodes representing the pair of samples (p, q) from the same class; white nodes, a 

feature i; and blue nodes, the pair of samples (p, q) from different classes (F and G). Figure 

adapted from  Berretta et al. (2008).  
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CHAPTER 7 

 

7. BASAL-LIKE BREAST CANCER SUBTYPE 

 

Among the five breast cancer intrinsic subtypes, the basal-like subtype is further explored in 

Chapter 7. These tumours form an important clinical group characterised by aggressive 

behaviour, poor prognosis and limited therapy response. However, the outcome of patients 

diagnosed within the basal-like subtype is contradictory. Some patients show increased risk of 

death within 5 years while others have a long-term survival of over 10 years. In this chapter, I 

investigate the genomic and transcriptomic signatures of 351 samples from the METABRIC and 

ROCK data sets to identify survival markers driving the disease outcomes. The content is 

available as a research paper at BMC Medical Genomics
9
 and is presented here in sections 7.1 

Introduction, 7.2 Methods, 7.3 Results, 7.4 Discussion, 7.5 Conclusion,   

                                                      
9
 Milioli, H.H.*; Tishchenko, I.*; Riveros, C.; Berretta, R.; Moscato, P. Basal-like breast cancer: 

molecular profiles, clinical features and survival outcomes. BMC Med Genomics; 10(1):19. *co-

authorship. 
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7.7 Supporting Information. In the breast cancer field, recognizing the disease’s aggressive 

state is relevant to improving clinical decision-making, with the administration of effective 

tailored therapy for high-risk patients while avoiding aggressive treatments for low risk patients. 
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7.1 Introduction 

 

Approximately 15% of all breast cancer cases are of basal-like subtype, often aggressive and 

highly recurrent lesions (Cleator et al., 2007; Lund et al., 2009; Millikan et al., 2008). Basal-like 

breast cancers (BLBCs) are defined by the lack of expression of the hormone receptors 

oestrogen (ER) and progesterone (PR), and the human epidermal growth factor receptor-2 

(HER2) (Prat et al., 2013; Rody et al., 2011). Histologically, these tumours show high grade, 

high mitotic indices, presence of central necrotic or fibrotic zones, pushing borders of invasion, 

lymphocytic infiltrate and atypical medullary features (Putti et al., 2005). The breast basal cell 

layer is also characterised by high expression of cytokeratins (CK5/6, CK14, and CK17) and 

epidermal growth factor receptor (EGFR), amongst other markers (Badve et al., 2011; Cheang 

et al., 2008; Hallett et al., 2012; Nielsen et al., 2004; Valentin et al., 2012). All these features 

contribute to the limited therapeutic response and therefore impact in the refractory nature of 

these tumours (Kreike et al., 2007; Rakha et al., 2008). Thus, patients diagnosed with BLBC 

have a poor prognosis and a short-term disease-free and overall survival (Banerjee et al., 2006). 

A better understanding of the pathophysiology and molecular basis of basal-like tumours is 

necessary to delineate patient outcomes. 

At the molecular level, basal-like tumours are considered more homogeneous than the 

immunohistochemically defined triple-negative breast cancers (TNBCs), even though the 

terminologies are used interchangeably (Bertucci et al., 2012; Cleator et al., 2007). Despite the 

relative molecular homogeneity, patients within this group still show divergent disease 

outcomes: some patients show high mortality and recurrence rates within the first 3-5 years, in 

contrast to others who survive over 10 years – with no recurrence – following the diagnosis 

(Banerjee et al., 2006; Carey et al., 2010; Rakha et al., 2008). For the latter group, the prognosis 

is better than those of luminal breast cancer subtype (Cheang et al., 2008; Mulligan et al., 2008). 

These observations suggest that BLBCs may be composed of at least two clinically distinct 

groups, with poor or excellent survival (Hallett et al., 2012). The molecular characterisation of 

these basal-like tumours is of particular interest in medicine since it may bring new insights to 

the disease understanding and management. Identifying markers and mechanisms involved in 

the differentiation of BLBCs is therefore an essential progression towards this end. Moreover, it 

would allow the development of tailored treatments with more effective individual response, 

leading to more personalised and conservative interventions for breast cancers (Fadare & 

Tavassoli, 2008). 
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Recent investigation of TNBCs pointed to the existence of intrinsic basal-like subtypes, 

with distinct molecular patterns (Burstein et al., 2014; Jézéquel et al., 2015; Lehmann et al., 

2011). The stratification performed and described by Lehmann et al. (2011) (Lehmann et al., 

2011) revealed the involvement of enriched cell cycle and cell division components in Basal-

like 1 (BL1); growth factor signalling, glycolisis and gluconeogenesis pathways in Basal-like 2 

(BL2); and immune cell processes in Immunomodulatory (IM). The authors also determined 

two other groups partially overlapping the basal-like subtype defined by the PAM50 classifier 

(Parker et al., 2009): Mesenchymal (M) and Mesenchymal stem-like (MSL). Alternatively, 

Burstein and colleagues (Burstein et al., 2014) defined the Basal-Like Immune-Suppressed 

(BLIS) and Basal-Like Immune-Activated (BLIA) subtypes. The former tumour type is 

characterised by multiple SOX family transcription factors, while the latter is described by Stat 

signal transduction molecules and cytokines. More recently, Jézéquel et al. (2015) (Jézéquel et 

al., 2015) pointed to two other groups: a basal-like with low immune response and high M2-like 

macrophages, and a basal-enriched with high immune response and low M2-like macrophages. 

All studies above described have focused on investigating the molecular heterogeneity of 

TNBCs, partially supporting each other.  

Multi-gene models have also been applied to predict breast cancer subtype (Haibe-

Kains et al., 2012; Parker et al., 2009), recurrence (Paik et al., 2004) and survival (Buyse et al., 

2006; Glas et al., 2006). The selection of genes across samples has generally been associated 

with hormonal expression levels and proliferation modules. Since BLBCs and TNBCs are 

hormone receptor (ER and PR) negative and highly proliferative, the prediction power of 

markers to further separate patients at risk within these groups is of limited value in the current 

models (Liu et al., 2014). Clinical assays independently modelling triple-negative samples have 

revealed superior ability in predicting outcomes of early stage tumours (Yau et al., 2010; Yau et 

al., 2013). These assays and most approaches, however, have focused on the 

immunohistochemically defined TNBCs (Hallett et al., 2012; Sabatier et al., 2011; Teschendorff 

et al., 2007). A more robust approach for characterising BLBC outcomes is yet to be developed. 

Accordingly, a proper investigation of BLBCs remains mandatory and determinant for patients 

diagnosed within this subtype (Badve et al., 2011). 

As the classification of TNBCs is not an ideal surrogate for defining BLBCs entities, a 

characterization of basal-like tumours at the genomic and transcriptomic levels is an urgent 

need. In this contribution, we aim at identifying markers associated with patients’ survival using 

larger breast cancer cohorts from the Molecular Taxonomy of Breast Cancer International 

Consortium (METABRIC) (Curtis et al., 2012) and Research Online Cancer Knowledgebase 

(ROCK) (Ur-Rehman et al., 2013). Through the determination of this signature, our objective is 
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to stratify 351 tumours into basal-like subgroups, with varying clinical features and survival 

outcomes, and further describe each of them. Accordingly, we plan to explore the microarray 

data – including gene (mRNA) and microRNA (miRNAs) expression values, and copy number 

aberration (CNA) measurements – to expand the molecular characterisation of BLBCs, which to 

our knowledge has not yet been performed. The assessment of more comprehensive profiles of 

BLBCs is relevant for defining groups-at-risk in clinical settings and, more importantly, for 

improving therapy response.  

 

 

7.2 Methods 

 

7.2.1 Breast Cancer Data Sets  

The METABRIC genomic and transcriptomic data sets were downloaded from the European 

Genome Phenome Archive (EGA) (http://www.ebi.ac.uk/ega), under the accession numbers 

EGAS00000000083 and EGAS00000000122. These publicly available collections contain 

genotyping (Affymetrix SNP 6.0), log2 normalised gene expression (Illumina Human WG-v3) 

and miRNA expression (Agilent ncRNA 60k) arrays for over 2000 breast tumours and 144 

control (non-tumour) breast samples (Curtis et al., 2012). The original METABRIC study was 

approved by the ethics Institutional Review Boards in the UK and Canada (Addenbrooke’s 

Hospital, Cambridge, United Kingdom; Guy’s Hospital, London; Nottingham; Vancouver; 

Manitoba). Further analysis on this data was approved by the Human Research Ethics 

Committee (HREC) at the University of Newcastle, Australia (approval number: H-2013-0277). 

The METABRIC cohort has a comprehensive description of patients long-term clinical 

and pathological outcomes. Tumour samples were assigned to a breast cancer subtype (luminal 

A, luminal B, HER2-enriched, normal-like, or basal-like) using an ensemble learning approach 

(Milioli et al., 2015), employing the set of 50 genes defined by Parker et al. (2009) (Parker et 

al., 2009). This approach has been previously shown to improve the samples classification and 

subtypes’ assignment in METABRIC data set, and has revealed more consistency in terms of 

clinical features and survival outcomes (Milioli et al., 2015). Based on these labels, a subset of 

250 basal-like tumours was selected for analysis in this study. For training and test purposes, 

this subset was randomly split into two sets of equal size (125) to avoid possible bias from the 

original cohort. The sets are hereafter referred to as the training and validation sets. 

http://www.ebi.ac.uk/ega
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For additional validation across platforms, we used the ROCK data set obtained at Gene 

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/), under data source number 

GSE47561 (Sims et al., 2010; Ur-Rehman et al., 2013). This data set integrates ten different 

studies (GSE2034, GSE11121, GSE20194, GSE1456, GSE2603, GSE6532, GSE20437, 

GSE7390, GSE5847 and E-TABM-185) performed on the Affymetrix HG-U133A technology. 

The compiled matrix contains log2 RMA renormalised gene expression values for 1570 tumour 

samples, of which are of basal-like subtype. The ROCK data set includes representative 

information for survival analysis, however, it lacks standard clinicopathological data which 

therefore has not been considered in this study. 

 

 

7.2.2 Probe Selection Approach 

Since the first aim of our study is to identify markers driving survival among basal-like patients, 

we designed a filtering technique to select a representative probe signature and reduce the bias 

arising from the high number of probes (48803) and low number of samples (125) in the 

training set. We defined two relevant criteria to select probes, which are involved in tumour 

initiation and/or progression, and are also correlated to survival, as detailed below.  

The Differential filter (Tishchenko et al., 2016) was employed to select probes 

exhibiting distinct expression levels between tumours and controls. The underlying assumption 

is that probes truly correlated with breast cancer are linked to genomic changes or variations 

from healthy to cancerous tissue. We applied the Differential filter to each of the 48803 probes 

to test their separation power between the 125 tumours and 144 controls. This filter tests for 

three feasible cases: the expression levels in tumours are (a) lower than, (b) higher than, or (c) 

lower and higher than in control samples. The last case refers to genes that are up-regulated in 

some tumours and down-regulated in others, while the expression levels of controls lie between 

these two groups. To calculate a p-value for this case, we mirrored all expression levels on one 

side with respect to the mean value of controls. The separation power of each probe was defined 

as the minimal Wilcoxon test p-value calculated for the three cases. To determine the number of 

probes passing the Differential filter, we plotted an ordered -log10 normalised p-values against 

the corresponding probe ranks. The threshold was set approximately at the point of the highest 

curvature of this function. This threshold is based on the naturally emerging systemic behaviour 

and does not require an external definition. Probes passing this filter are referred to as the 

differential probe set. 

http://www.ncbi.nlm.nih.gov/geo/
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The Survival filter (Tishchenko et al., 2016) – was used to further identify probes for 

which the expression levels are associated with patients' survival. This filter employs the 

Kaplan-Meier estimator to compute survival probabilities. The stratification power of each 

probe is calculated using the Log-rank test applied to two groups of samples corresponding to 

quantiles with the lowest and the highest expression values, respectively. We defined these 

quantiles by ordering all samples by their expression values of a probe and selected samples in 

the first and last thirds (the quantile from 0% to 33% in the relatively under-expressed and from 

67% to 100% in the relatively over-expressed group). This analysis was performed in R using 

the package survival (Therneau, 2015). Since the survival information is not provided for all 

samples, this calculation was based on 115 basal-like tumour samples (from the total of 125) in 

the METABRIC training set. To determine the number of probes passing the Survival filter we 

used a similar threshold definition as for the Differential approach, i.e. by ordering the -log10 

normalised p-values that emerged from the Log-rank test. These probes are further referred to as 

the survival probe set. 

 

 

7.2.3 Clustering Basal-like Breast Cancer Samples 

The second aim of our study is to identify and characterise basal-like subgroups with varying 

disease outcomes. To this end, we performed a hierarchical clustering of samples based on the 

previously defined survival probe set. This procedure exploits the assumption that probes 

showing most variations in expression and co-expression among each other are involved in 

similar biological mechanisms and have a high impact on the groups’ delineation. To calculate 

the dissimilarity between the 115 samples from the METABRIC training set, for which the 

survival information is provided, we used the square root of the Jensen-Shannon divergence 

(Berretta & Moscato, 2010; Grosse et al., 2002; Merkin et al., 2012). We then generated the 

hierarchical clustering with the Ward’s criterion that minimises the variance within clusters, 

using the R package stats (Murtagh & Legendre, 2013). 

We further examined which probes from the survival probe set contribute the most to 

the separation of basal-like subgroups using the Wilcoxon test. We then ordered the -log10 

normalised p-values to determine the probes that significantly differentiate between the 

subgroups by using the same threshold criterion as for the Differential filter. The purpose of this 

procedure is to refine the probes that best segregate basal-like subgroups of distinct disease 

outcome. These probes are further referred to as the probe signature and expose striking genes 

and cell mechanisms involved in the subgroups differentiation. 
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7.2.4 Validation across Data Sets 

The basal-like entities were first matched to the METABRIC validation set by means of 

centroids computed based on the previously defined probe signature. Samples in this data set 

were then assigned to a subgroup according to the minimal Euclidean distance to a centroid. 

An external validation was conducted on the ROCK data set, for which the centroids 

were mapped across technologies – from Illumina to Affymetrix – using the gene annotation 

packages hgu133a.db and illuminaHumanv3.db in R  Bioconductor (Carlson, 2016a; Dunning et 

al., 2015; Gentleman, 2003). Since the mRNA level measurement and normalisation differ 

between METABRIC (Illumina) and ROCK (Affymetrix) data sets, we standardised the 

calculated centroid absolute values with respect to the average expression levels computed for 

all basal-like samples. This procedure is depicted in Equation 7.1, where 𝑠𝑖,𝑗 is the expression 

value of probe j for sample i, and N is the total number of basal-like samples (N is equal to 115 

in the METABRIC training set). 

 

Equation 7.1 Normalisation 

 

 

Following the centroids' normalisation, an analogous transformation of Affymetrix gene 

expression values was necessary to enable their direct application. Thus, we applied the same 

formula (Equation 7.1) to the ROCK data set, where the number N of total samples is 101.  The 

assignment to subgroups was based on the minimal Euclidean distance to a standardised 

centroid. 

 

 

7.2.5 Network Analysis 

With the purpose to identify key players within the probe signature and their relation to each 

other, we generated and plotted a network graph using the Minimum Spanning Tree (MST) 

(Cormen, 2009). The distance 𝑑(𝑥, 𝑦) between two probes 𝑥, 𝑦 is defined as 𝑑(𝑥, 𝑦) =
1

|𝜌𝑠(𝑥,𝑦)|
 

where |𝜌𝑠(𝑥, 𝑦) | is the value of the Spearman correlation between the probe expression 

calculated for 125 tumour samples from the training set. 
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To quantify the network analysis, we computed the betweenness centrality and node 

degree of each node (probe) using the R package igraph (Csardi & Nepusz, 2006). Generally, 

nodes with high betweenness centrality and degree values represent potential key players within 

the network. With regards to the centrality values, the most representative entities are highly 

connected to the rest of the tree; leaf-nodes have a betweenness centrality value of 0, while the 

most traversed nodes are assigned with the highest values (normalised up to 1). Node degree, on 

the other hand, is indicative of the number of direct neighbours of a node. Thus, probes with 

high degrees are also central (representative) for local groups with a relatively strong probe co-

expression. 

 

 

7.2.6 MicroRNA Differential Expression 

To uncover the miRNAs differentiating the most between the basal-like subgroups, we applied 

the Wilcoxon test to expression values of each of the 853 probes available in the METABRIC 

data set. We considered those miRNAs with the emerging p-values smaller than 0.01 in both 

training and validation sets as relevant for the separation between basal-like subgroups. Both 

data sets were used due to the limited number of samples (146 in total) for which the miRNA 

expression profiles were provided. The miRNA probes were further investigated for possible 

target genes within the probe signature using R Bioconductor (RmiR.Hs.miRNA (Favero, 2013)) 

across five databases: miRBase, TarBase, PicTar, MirTarget2 and miRanda. For the miRNA 

and gene annotation we used the packages hgug4112a.db (Carlson, 2016b) and 

lluminaHumanv3.db (Dunning et al., 2015), respectively. 

 

 

7.2.7 Copy Number Aberration Profiles 

To quantise the CNA we employed the cytobands defined in the hg18 data base that 

corresponds to the METABRIC platform. Aberrations were divided into two categories: losses 

(originally denoted as homozygous and heterozygous deletions) and gains (gains and 

amplifications). For each basal-like subgroup we then calculated the occurrence rates of gains 

and losses per cytoband, and applied the Binomial test to examine the hypothesis that the CNA 

distributions were the same among patient subgroups. 

We further calculated the Percent Genome Altered (PGA) for each of the basal-like 

subgroups and applied the Wilcoxon test to these rates to obtain a significance value of the 
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difference between them. The aim of this approach is to identify stable/unstable genome profiles 

associated with the patient subgroups defined by our probe signature and to statistically 

describe whether they are consistently diverging. 

 

 

7.3 Results 

 

7.3.1 Survival-related Probes Defining Basal-like Subgroups 

With the application of the Differential and Survival filters in the METABRIC training set we 

identified 15000 and 400 probes related to cancer initiation and/or progression, and patients 

survival, respectively. The corresponding probes in the differential probe set with distinct 

expression levels between tumours and controls showed significant p-values ranging from 2.36 ∙ 

10
−45

 to 1.53 ∙ 10
−7

. The reduced number of probes in the survival probe set related to the 

individual survival had significant p-values ranging from 1.11 ∙ 10
−4

 to 0.04. These probes, 

ultimately, comprise a representative signature driving the outcome of basal-like patients in the 

METABRIC breast cancer cohort. 

The hierarchical clustering of 115 basal-like samples based on the survival probe set has 

revealed two major subgroups: Basal I and Basal II, as shown in Supporting Information – 

Figure 7.6. A separation into more than two subgroups – in the next and subsequent 

hierarchical divisions in the dendrogram – was not supported due to the high similarity of 

subgroups in terms of their molecular profile and clinical outcome. The application of the 

Wilcoxon test has defined the probe signature containing the top 80 probes, with significant p-

values ranging from 1.75 · 10−13 to 3.77 · 10−4, differentiating the most between the two 

basal-like groups at the transcriptomic (mRNA) level. A heat map of the 80-probe signature for 

the training set is plotted in Figure 7.1, where samples are ordered within each subgroup by 

their Euclidean distance to the corresponding centroids (Supporting Information – Table 7.6, 

Table 7.7 and Table 7.8). 
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To characterise the 80-probe signature with respect to their cellular function, we 

clustered the probes by their mutual correlation into three groups – G1, G2 and G3 (

 

Figure 7.2 Minimum Spanning Tree of the 80-probe signature  

The MST graph was generated for the 80 probes in the training set. Only probes with high 

correlation values between their expression levels are connected to a network. The size of each 

node is proportional to the computed node degree value (number of connections). The colour of 
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each node is reflective of the betweenness centrality value ranging between low (light pink) and 

high (red). 

 

Table 7.1) – and functionally annotated using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) (Supporting Information – Table 7.9, Table 

7.10 and Table 7.11). This analysis revealed that G1 probes are strongly associated with cell 

cycle control and cell division; they are over-expressed in Basal II subgroup. G2 showed 

relation to immune system and inflammatory response. Remarkably, the expression levels of G2 

probes in Basal II are similar to that observed in controls, but much higher in Basal I, suggesting 

an intratumoral infiltration by lymphocytes in this subgroup. In the last group, G3, probes 

indicate an association (not significant) with metal-binding processes; they are under-expressed 

in Basal II when compared to Basal I and control samples. 
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The betweenness centrality and node degree analysis of the 80-probe signature (Figure 

7.2) further outlined important genes differentiating between Basal I and Basal II subgroups (

 

Figure 7.2 Minimum Spanning Tree of the 80-probe signature  

The MST graph was generated for the 80 probes in the training set. Only probes with high 

correlation values between their expression levels are connected to a network. The size of each 

node is proportional to the computed node degree value (number of connections). The colour of 
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each node is reflective of the betweenness centrality value ranging between low (light pink) and 

high (red). 

 

Table 7.1). The genes with the highest centrality values (B ≥ 0.1) in G1 are PSMG3, 

HJURP, BEND3, C10orf2, TPX2, RRP12 and DNMT3B; in G2, CXCR6, HCST, C3AR1, GBP4, 

LY96, ANKRD22, FPR3 and FCGR2A; and in G3, CTSK. Within this set, the genes HJURP, 

RRP12, DNMT3B, CXCR6, HCST, C3AR1, FPR3 and CTSK also showed high node degree 

values (ND ≥ 4), representative for probe co-expression, corroborating with their key role on the 

differentiation of basal-like carcinomas. 
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Figure 7.1 Heat map of the 80-genes signature in METABRIC training set  

The figure displays 80 survival-related genes ordered by their overall rank within each basal 

subgroup. The probes expression levels in the METABRIC validation set were defined after the 

computation of centroids in the training set. Samples in each basal subgroup are ordered by their 

overall rank and the expression values are normalised across individuals. In the ROCK data set 

based on the Affymetrix identifier, all samples are ordered by their overall rank of 55 probes 

and split into two groups using the rank value range. The 55 Affymetrix probes correspond to 

80 Illumina features defined in the METABRIC data set. 
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Figure 7.2 Minimum Spanning Tree of the 80-probe signature  

The MST graph was generated for the 80 probes in the training set. Only probes with high 

correlation values between their expression levels are connected to a network. The size of each 

node is proportional to the computed node degree value (number of connections). The colour of 

each node is reflective of the betweenness centrality value ranging between low (light pink) and 

high (red). 
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Table 7.1 The 80-genes signature related to survival 

Groups Gene Illumina_ID B ND 

G1 C10orf2 ILMN_1701243 0.17 3 

 

RRP12 ILMN_1767253 0.12 4 

 

CD24 ILMN_2060413 0 1 

 

SURF6 ILMN_1778032 0 1 

 

GPATCH1 ILMN_1655625 0.03 2 

 

CEL ILMN_1723418 0 1 

 

LOC641765 ILMN_1692198 0 1 

 

DNMT3B ILMN_2328972 0.1 4 

 

MIS18A ILMN_1712386 0 1 

 

DSN1 ILMN_1715905 0.03 2 

 

TPX2 ILMN_1796949 0.14 3 

 

HJURP ILMN_1703906 0.42 5 

 

CAD ILMN_1810992 0 1 

 

BEND3 ILMN_2375032 0.21 3 

 

EIF2AK1 ILMN_2156267 0.07 2 

 

PSMG3 ILMN_1802627 0.47 3 

 

MXD3 ILMN_1711904 0 1 

 

PSRC1 ILMN_2315964 0 1 

 

ASPSCR1 ILMN_1660749 0.05 2 

 

PRKCSH ILMN_1777794 0.03 2 

 

LOC650803 ILMN_1803510 0.05 2 

 

KCTD15 ILMN_1786326 0 1 

 

RBFA ILMN_1736130 0 1 

  STK25 ILMN_1668090 0.03 2 

G2 PYHIN1 ILMN_1742026 0.05 3 

 

THEMIS ILMN_1684040 0 1 

 

PCED1B ILMN_1712431 0.03 2 

 

PTCRA ILMN_2091920 0 1 

 

HCST ILMN_2396991 0.57 6 

 

LY96 ILMN_1724533 0.45 3 

 

CASP4 ILMN_1678454 0 1 

 

SNTB1 ILMN_1793410 0 1 

 

GBP4 ILMN_1771385 0.46 2 

 

DOK2 ILMN_1791211 0 1 

 

GM2A ILMN_2221046 0 1 

 

FPR3 ILMN_2203271 0.17 4 

 

C3AR1 ILMN_1787529 0.47 7 
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FCGR2A ILMN_1666932 0.12 2 

 

CCR1 ILMN_1678833 0 1 

 

LOC647108 ILMN_1774206 0.03 2 

 

CLEC12A ILMN_2403228 0 1 

 

CLEC12A ILMN_1663142 0.03 2 

 

ADORA3 ILMN_1730710 0 1 

 

CLEC7A ILMN_1700610 0.03 2 

 

LOC650799 ILMN_1715436 0 1 

 

MIAT ILMN_1864900 0 1 

 

IKZF3 ILMN_2300695 0 1 

 

ANKRD22 ILMN_2132599 0.45 2 

 

AIM2 ILMN_1681301 0.03 2 

 

IL2RA ILMN_1683774 0 1 

 

MARCH1 ILMN_2094942 0.05 3 

 

LAP3 ILMN_1683792 0 1 

 

GPR65 ILMN_2232121 0.03 2 

 

GPR65 ILMN_1734740 0.05 2 

 

FAM26F ILMN_2066849 0 1 

 

CXCL11 ILMN_2067890 0 1 

 

NFS1 ILMN_1761314 0.05 2 

 

CXCR6 ILMN_1674640 0.68 10 

 

RASSF5 ILMN_2362902 0.07 2 

 

NAPSB ILMN_1723043 0.05 3 

 

IKZF1 ILMN_1676575 0 1 

 

PTPN22 ILMN_1715885 0 1 

 

PTPRC ILMN_1653652 0.07 3 

  PTPN22 ILMN_2246328 0 1 

G3 RPL36AL ILMN_2189936 0 1 

 

GARNL3 ILMN_1779347 0 1 

 

PNPLA4 ILMN_1664348 0 1 

 

SH3BGRL ILMN_1702835 0.03 2 

 

HS.576380 ILMN_1848030 0 1 

 

FMO1 ILMN_1684401 0 1 

 

CTSK ILMN_1758895 0.1 4 

 

EGR2 ILMN_1743199 0 1 

 

CLEC1A ILMN_1691339 0 1 

 

HSD11B1 ILMN_2389501 0.03 2 

 

CEBPA ILMN_1715715 0 1 

 

TIMP3 ILMN_1701461 0.03 2 
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FBXL5 ILMN_1673370 0 1 

 

SCARNA9 ILMN_1805064 0 1 

 

PPM1M ILMN_1657810 0.05 3 

  DOCK6 ILMN_1801226 0 1 

Note: The 80 annotated Illumina probes distinguishing the basal-like 

subgroups are listed in this table, in the same order as in the heat map. 

The Gene Symbol and Illumina probe IDs are defined for each probe 

Group. This table also contains the betweenness centrality (B) and node 

degree (ND) values calculated for each probe in the basal-like 

training set. 

 

 

 

7.3.2 Basal I and Basal II Validated across Independent Data Sets and 

Microarray Platforms 

The quality of the 80-probe signature was evaluated using centroids calculated for the training 

set and applied to the METABRIC and ROCK validation sets. In ROCK, 55 annotated probes 

matched from Illumina to Affymetrix and were validated across the microarray platforms. The 

corresponding heat maps, in Figure 7.1, showed the existence of two main basal-like 

subgroups, Basal I and Basal II, in both METABRIC and ROCK validation sets. The two 

subgroups are consistent with regards to the population size and mRNA expression levels (in 

G1, G2 and G3) and further support the quality of the 80-probe signature. The definition of 

more than two subgroups in the hierarchical clustering would lead to the separation of entities 

with highly similar molecular profiles.  

 

 

7.3.3 Clinical Features and Survival Outcomes Supporting the Basal-like 

Subgroups 

The analysis of clinicopathalogical markers revealed a significant correlation between the basal-

like subgroups defined in this study and tumour histology (Invasive Ductal Carcinoma versus 

medullary type), tumour size and p53 status (Table 7.2). According to histological 

classification, the medullary type is more common among Basal I patients. On the other hand, 

the Basal II subgroup is characterised by larger tumours (in size) and a higher frequency of p53 

mutation. Clinical features, such as age, menopausal status (MS), grade, Nottingham Prognostic 

Index (NPI) and lymph nodes, did not show statistically significant variations across the two 

basal-like subgroups. 
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The survival analysis revealed significant differences in patients’ outcome between 

Basal I and Basal II. Basal I showed a better prognosis in comparison to Basal II in all data sets 

(Figure 7.3), with the Log-rank test p-values of 0.0097, 0.017 and 0.043 for the METABRIC 

training, validation and ROCK data sets, respectively. 

 

 

Figure 7.3 Survival curves in the METABRIC and ROCK data sets 

The survival analysis was performed using the Kaplan-Meier curves. The grey line shows the 

disease specific survival of the basal-like subtype in the training and validation sets. Basal I 

subgroup is shown in turquoise, while Basal II in coral. Ticks represent sensors of patients who 

are alive and drops denote deaths. Lines based on the last ten observations are plotted in dash.  
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Table 7.2 Clinical information of patients and tumour samples in the METABRIC data set 

   Training Set Validation Set 

 
 

Basal I Basal II Basal I Basal II 

Age [y.] ≤ 40    7 18 4 17 

 41 to 50     11 18 10 21 

 51 to 60     8 20 9 16 

 > 60       9 24 13 35 

 mean       50.6 52.5 54.7 54.1 

 p-value 0.46 0.8 

MS pre/post     18/17 36/43 15/21 37/52 

 pre/post (%)   48.60% 54.40% 58.30% 58.40% 

 mean  0.31 1 

Size [cm] ≤ 2 cm  15 30 17 32 

 > 2 cm     20 50 19 55 

 mean     2.35 2.97 2.26 2.9 

 p-value 0.01 0.005 

Grade grade 2  2 8 5 3 

 grade 3  33 71 30 85 

 mean  2.9 2.9 2.9 3 

 p-value 0.4 0.092 

NPI ≤ 2.4   0 1 1 1 

 2.4 to 3.4   1 6 3 2 

 3.4 to 5.4   28 62 27 77 

 > 5.4      6 11 5 9 

 mean       4.7 4.6 4.5 4.6 

 p-value 0.43 0.7 

LN neg/pos   16/19   37/43   17/19   47/42  

 neg/pos (%)   45.7% 46.2% 47.2% 52.8% 

 p-value 1 0.34 

Histology IDC  28 71 23 84 

 ILC  0 3 1 2 

 IDC-med  7 5 9 3 

 others  0 0 3 1 

 medullary (%)  20% 6.25% 25% 3.37% 

 p-value  0.001 5.4 . 10
-4

 

P53 mut/wild  1/15 11/14 2/11 12/17 

 mut/wild (%) 6.25% 44% 15.40% 41.40% 

 p-value 1.1 . 10
-7

 7 . 10
-4

 

Population size 
 

35 80 36 89 

Note: The patients Age at diagnosis and menopausal status (MS) are listed for each subgroup. 

Median values were calculated for some of the variables. The clinicopathological characteristics 

described for the tumours are: Size, Grade, Nottingham prognostic index (NPI) and Lymph node 

(LN) status. The total number of lymph node positives and collected among patients are first 

detailed; followed by the ratio of patients with node negative and positive, in absolute values and 

percentage. The P53 wild and mutation status is also defined in absolute values and percentage. 

Tumour Histology is described for samples diagnosed with Invasive Ductal Carcinoma (IDC), 

Invasive Lobular Carcinoma (ILC), medullary carcinoma and others (tubular, mucinous and 

phyllodes tumours). The number of patients in each group is indicated in Population size. 
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7.3.4 MicroRNAs Differentially Expressed between Basal I and Basal II 

We identified 17 miRNAs and 2 putative probes differentially expressed between the two basal-

like subgroups (Table 7.3), with the Wilcoxon test p-values smaller than 0.01 in both 

METABRIC data sets (Supporting Information - Table 7.12). The probes hsa-miR-155, -342- 

5p and -150 showed the lowest p-values and an overexpression in Basal I, when compared to 

Basal II and control samples. The transcripts hsa-miR-19b-1*, -17* and -200c*, on the other 

hand, were over-expressed in Basal II tumours relative to Basal I and controls. The expression 

levels of all probes are depicted in Figure 7.4. Additionally, the identified miRNAs were 

matched against the 80-probe signature revealing a set of 50 gene-targets across five distinct 

databases, as listed in Table 7.4  and further detailed for Basal I and Basal II in Supporting 

Information – Table 7.12, Table 7.13 and Table 7.14. Among the gene-targets, C10orf2, 

HSD11B1, EGR2, FBXL5, CLEC7A, DNMT3B, FMO1, CTSK and PYHIN1 were present in at 

least two databases. A comparison between miRNA and gene expression levels across 

subgroups showed significant correlations of hsa-miR-142-5p and RASSF5, hsa-miR-142-5p 

and TIMP3, hsamiR-150 and MIAT, and hsa-miR-22 and TIMP3 in both Basal I and Basal I. 

 

 

Table 7.3 MicroRNAs differentiating basal-like breast cancer subgroups 

SGs miRNA Probe_IDs p-value 

BI hsa-put-miR-92597 CRINCR2000005427 2.8 . 10
-4 

 
hsa-miR-361-3p A_25_P00012305 2.8 . 10

-4
 

 
hsa-miR-342-3p A_25_P00012357 4 . 10

-4
 

 
hsa-miR-140-3p A_25_P00012177 1.3 . 10

-4
 

 
hsa-miR-34a A_25_P00012086 4.9 . 10

-3
 

 
hsa-miR-22 A_25_P00010204 6.3 . 10

-3
 

 
hsa-miR-142-5p A_25_P00014844 2 . 10

-4
 

 
hsa-miR-142-3p A_25_P00011016 2.2 . 10

-3
 

 
hsa-miR-155 A_25_P00012271 6.3 . 10

-6
 

 
hsa-miR-342-5p A_25_P00012354 2 . 10

-7
 

 
hsa-miR-150 A_25_P00014847 8.7 . 10

-6
 

 
hsa-put -miR-4391 CRINCR2000005084 1.2 . 10

-4
 

 
hsa-miR-29c A_25_P00012274 6.7 . 10

-3
 

 
hsa-miR-29c* A_25_P00013484 5.6 . 10

-4
 

  hsa-miR-29a A_25_P00012013 4.8 . 10
-3
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BII hsa-miR-19b-1* A_25_P00013163 5.3 . 10
-4

 

 
hsa-miR-17* A_25_P00013151 5 . 10

-4
 

 
hsa-miR-17 A_25_P00013841 1.9 . 10

-3
 

  hsa-miR-200c* A_25_P00013469 1.8 . 10
-4

 

Note: The list of miRNAs distinguishing Basal I (BI) and Basal II (BII) subgroups, 

with the corresponding p-value in the METABRIC training set. Probe IDs and 

annotated miRNA from Agilent platform are defined for each basal-like subgroup.  

 

 

Table 7.4 MicroRNAs and corresponding target genes 

miRNA Targets 

hsa-miR-361-3p C3AR1, CEBPA, GM2A, MIAT, SURF6,TIMP3 

hsa-miR-342-3p MXD3, PSMG3, PTCRA, PTPRC, TIMP3 

hsa-miR-140-3p C10orf2 , CXCL11, KCTD15, PNPLA4, PRKCSH, RRP12, STK25 

hsa-miR-34a CXCL11, DSN1, FCGR2A, GPR65, IKZF3, PNPLA4 

hsa-miR-22 DOK2, GM2A, HSD11B1, MXD3, PNPLA4, STK25, TIMP3 

hsa-miR-142-5p C10orf2, CD24, CEBPA, EGR2, FBXL5, FPR3, HSD11B1, RASSF5, TIMP3 

hsa-miR-142-3p CD24, EGR2, PNPLA4, SH3BGRL 

hsa-miR-155 PSRC1, RBFA 

hsa-miR-342-5p ASPSCR1, CASP4, IKZF1, PSRC1 

hsa-miR-150 CCR1, EGR2, FBXL5, MIAT 

hsa-miR-29c CLEC7A, DNMT3B, FCGR2A, FMO1, KCTD15, MIAT, TPX2 

hsa-miR-29c* GARNL3, HJURP, MIS18A 

hsa-miR-29a CLEC7A, DNMT3B, FCGR2A, FMO1,KCTD15, MIAT, TPX2 

hsa-miR-19b-1* CXCR6, FCGR2A, HSD11B1, MXD3 

hsa-miR-17 AIM2, BEND3, CEL, CTSK, EGR2, FBXL5, PNPLA4, PYHIN1, SNTB1, TIMP3 

hsa-miR-200c* DOK2, HJURP, IL2RA, PSRC1, RRP12 

Note: Differentially expressed miRNAs and corresponding target genes in the 80-probe signature. 

The matching targets were listed in five databases: miRBase, TarBase, PicTar, MirTarget2 and 

miRanda. Target genes that were present in at least two databases are underlined. 
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Figure 7.4 The box plot of miRNAs differentiating Basal I and Basal II subgroups  

The image shows the expression levels of 19 miRNAs across basal-like subgroups and control 

samples in the METABRIC data set. 
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7.3.5 Copy Number Aberration Profiles Further Differentiating Basal-

like Subgroups 

The integrated analysis of CNA has revealed an increasing number of genomic changes from 

Basal I to Basal II subgroup (Figure 7.5) and uncovered cytobands with significant aberrations 

(binomial test p-values < 0.15) in both METABRIC training and validation sets (Table 7.5). 

Accordingly, critical gains/amplifications were detected on chromosomes 1q, 3q, 8q, 10p and 

17q, and losses/deletions on 4q, 5q, 8p, Xp and Xq. Several of these aberrations have been 

previously associated with primary breast tumours and cell lines in BLBCs and/or TNBCs 

studies (Burstein et al., 2014; Engebraaten et al., 2013; Kao et al., 2009; Loo et al., 2011; 

Weigman et al., 2012). Notably, the percent of the genome being altered in the training set for 

Basal I was 2.74% for gains and 0.23% for losses; in Basal II it was 9.06 and 1.03%, 

respectively. The Wilcoxon test showed significant heterogeneity among the subgroups for the 

gains (p-value = 1.91 · 10
−6

) and for losses (p-value = 9.55 · 10
−4

). The same pattern was 

observed in the validation set for Basal I (3.58% for gains and 0.13%) and Basal II (10.46% for 

gains and 2.54%), also highly significant (Wilcoxon test: p-value = 1.11 · 10
−6

 for gains and p-

value = 5.37 · 10
−6

 for losses). The increasing genome instability represented by increasing 

PGA, plotted in Figure 7.5, occurred consistently, from Basal I to Basal II, with the decreasing 

rates of patients’ survival. 
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Figure 7.5 Copy number aberration of basal subgroups in METABRIC data set  

The x-axis corresponds to 23 chromosomes including the X chromosome, while the y-axis 

represents the percentage of the population with amplifications or deletions in certain cytobands 

of these chromosomes. Positive values correspond to amplifications, while the negative ones to 

deletions.  
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Table 7.5 Cytobands associated with significant CNA acquisitions 

Type Cytoband p-value (T) p-value (V) 

Gain  1q21.1 0.055 0.0012 

 

 1q22 0.012 0.033 

 

 1q23.1 0.038 0.024 

 

 1q24.1 0.123 0.064 

 

 1q32.3 0.099 0.14 

 

 1q42.11 0.012 0.017 

 

 1q42.12 0.08 0.015 

 

 1q42.13 0.023 0.0059 

 

 1q42.3 0.12 0.03 

 

 1q43 0.0063 0.012 

 

 1q44 0.021 0.049 

 

3q28 0.044 0.016 

 

8q13.2 0.044 0.054 

 

8q21.13 0.14 0.037 

 

8q22.1 0.092 0.06 

 

8q22.2 0.097 0.065 

 

8q23.2 0.12 0.0096 

 

8q24.11 0.075 0.049 

 

8q24.21 0.05 0.039 

 

8q24.22 0.012 0.086 

 

10p15.3 0.1 0.004 

 

10p12.32 0.12 0.013 

 

17q25.1 0.06 0.1 

Loss  4q35.1 0.021 0.015 

 

5q12.2 0.15 0.04 

 

5q14.3 0.06 0.1 

 

8p21.2 0.046 0.027 

 

8p21.1 0.085 0.043 

 

Xp22.13 0.066 0.046 

 

Xp21.2 0.049 0.059 

 

Xq13.3 0.066 0.053 

 

Xq21.2 0.14 0.12 

  Xq21.32 0.066 0.053 

Note: Chromosomes and cytobands are defined for varying (type) copy 

number aberration, gains and losses, among basal-like tumours. The 

columns T and V represent the METABRIC training and validation sets, 

respectively. 
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7.4 Discussion 

 

7.4.1 Survival-related Probes Defining the Molecular Signature of Basal-

like Breast Cancer Subgroups 

The basal-like subgroups defined in this study show distinct patterns in terms of tumour 

molecular profiles, clinicopathological features and patients survival outcomes. The 

characterisation of BLBCs, considering the two major entities Basal I and Basal II, is supported 

by the identification of the 80-probe signature, validated across Illumina and Affymetrix 

platforms in the METABRIC and ROCK cohorts. The importance of this signature, genes and 

gene-families, is defined by their functionality for each set: G1, G2 and G3. The annotated 

probes revealed their association with cell cycle and cell division components, 

immune/inflammatory regulation and metal binding, respectively, and defined Basal I (Immune 

Active) and Basal II (High Proliferative) subgroups. In Basal I, the over-expression of G2 

probes suggests an immune activation and lymphocytic infiltration, particularly regulating 

tumour growth and patients’ survival. This role has been previously associated with a better 

prognosis and therapy response (Andre et al., 2013), and has the potential to stratify basal-like 

breast cancers. On the other hand, the over-expression of G1 cell cycle-related genes and under-

expression of G3 metal binding genes in Basal II impact on cell proliferation rates and energy 

metabolism. In this case, the cells reproduce at a rate far beyond the common bounds of a 

controlled cell cycle, concomitantly with other molecular changes in metabolic processes. 

The G1 genes PSMG3, HJURP, BEND3, TPX2, RRP12 and DNMT3B exhibited the 

highest centrality values and were over-expressed in the Basal II subgroup. HJURP, for 

instance, plays a central role in the maintenance of newly replicated centromeres and mitotic 

regulation. Increased levels of this gene in primary tumours and breast cancer cell lines have 

been previously correlated to decreased disease-free and overall survival (Z. Hu et al., 2010). 

Also involved in the mitotic spindle assembly, TPX2, when over-expressed, has been associated 

with proliferation networks and metastasis enhancement, holding a prognostic value for breast 

cancer patients (Geiger et al., 2014). Additionally, the hyperactivity of the DNA 

methyltransferase enzymes, or the over-expression of DNMT3B, has been further reported in 

BLBCs and TNBCs, where the hypermethylation events were more frequent than in other breast 

cancer subtypes (Roll et al., 2013). Hypermethylated tumours also presented decreased levels of 

regulatory miRNAs, including hsa-miR-29a and -29b. In particular, the under-expression of 

hsa-miR-29c has been marked as characteristic of BLBCs, segregating them into two subsets 
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(Sandhu et al., 2014), which has been supported by our findings. More studies, however, are 

required to investigate the biological role of other representative genes, such as PSMG3, 

BEND3 and RRP12 in G1. 

A number of G2 genes are key regulators of the basal-like tumorigenesis, such as 

CXCR6, HCST, C3AR1, GBP4, LY96, ANKRD22, FPR3 and FCGR2A. These genes show the 

highest betweenness centrality and node degree among tumours, and appeared over-expressed in 

Basal I. In other reports, the CXCR6 over-expression has been linked to TNBCs, with distinct 

roles in autoimmunity and cancer (Chaturvedi et al., 2014). The coexpression of CXCR6 and 

CXCL16, a chemokine ligand and receptor, has been associated with inflammatory response and 

cell migration (Darash-Yahana et al., 2009; Xiao et al., 2015). In addition, high levels of HCST 

(Hyka-Nouspikel et al., 2007; Hyka-Nouspikel & Phillips, 2006), C3AR1 (S. W. Wu et al., 

2015), GBP4 (Y. Hu et al., 2011), LY96 (Deguchi et al., 2016), ANKRD22 (Caba et al., 2014), 

FPR3 (Prevete et al., 2015) and FCGR2A (Nimmerjahn & Ravetch, 2008), have also been 

related to immune activation and/or inflammatory response in tumours; however, their role in 

basal-like breast malignancies are yet to be uncovered. In our study, the increased expression 

levels of these probes, among others genes in the signature, has brought new insights on the 

basal-like tumour origin and progression, and Basal I and Basal II differentiation. 

Standard clinical variables such as tumour size, histology and p53 status have also 

corroborated with the existence of the two basal-like subgroups. Basal I showed the highest 

frequency of medullary type, whereas Basal II exhibits the largest average of tumour size and 

highest frequency of p53 mutation. The interpretation of these features, in practice, support the 

better outcome of patients within Basal I subgroup, when compared to Basal II. Patients’ age, 

post-menopausal status, tumour grade, NPI and lymph node invasion, on the other hand, are of a 

limited value for distinguishing the subgroups. Most of these variables reflect the overall 

tumour aggressiveness and the subtype poor prognosis. 

 

 

7.4.2 MicroRNA Expression Levels Differentiating Basal I from Basal II  

This work is the first instance of miRNA data coverage yielding the analysis of basal-like 

subgroups, which includes patients with matched genomic, transcriptomic and long-term 

survival data (Dvinge et al., 2013). The miRNAs have showed an important value for 

differentiating Basal I (15) and Basal II (4). In Basal I, hsa-miR-361-3p, -342-3p, -140-3p, -34a, 
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-22, -142-5p, -142-3p, -155, -342-5p, -150, -29c and -29a presented increased expression 

relative to Basal II. Overall, hsa-miR-361-3p has been found over-expressed in TNBCs with 

respect to other subtypes and healthy controls (Shin et al., 2015); and used to discriminate 

BRCA1/2 mutation carriers and non-carriers tumours (Tanic et al., 2015). Greater levels of this 

miRNA, however, have been associated with a protective value in tumour progression (Roth et 

al., 2012) and further linked to inflammatory response (Guo et al., 2015). In line with our 

findings, these results contain additional information for the better understanding of basal-like 

subgroups. Additionally, high levels of hsa-miR-342-5p (Leivonen et al., 2013; Pérez-Rivas et 

al., 2014) and -34a (Hargraves et al., 2015; M. Y. Wu et al., 2014) have been correlated to 

breast cancer decreased recurrence and increased survival; whereas low levels have been 

associated with cell death inhibition and therapy resistance. The hsa-miR-22 (Chen et al., 2015; 

Kong et al., 2014) and members of the hsa-miR-29 family (-29a, -29b and -29c) (Nygren et al., 

2014; Sandhu et al., 2014) – previously identified as tumour suppressors – have also been 

implicated in increased survival (Nygren et al., 2014) and pointed out as promising prognostic 

biomarkers (Chen et al., 2015; Kang et al., 2015). 

In Basal II, hsa-miR-19b-1, -17 and -200c presented higher expression levels relative to 

Basal I and control samples. Tumour cells with enhanced expression of hsa-miR-19 (-19a and -

19b-1) have been shown to trigger epithelial-mesenchymal transition (Li et al., 2015). Notably, 

members of the hsa-miR-200 family have been described as major regulators of this biological 

process. High levels of hsa-miR-200c and -200b have been observed in circulating tumour cells 

from patients with metastatic breast cancers (Le et al., 2014), indicating the prognostic 

significance of this biological marker (Erbes et al., 2015; Tuomarila et al., 2014). Consistent 

with these observations, our results demonstrated the recurrent over-expression of hsa-miR-19b-

1 and -200c in Basal II, with the worst disease outcome among the two basal-like subgroups. 

Ultimately, high levels of hsa-miR-17 has been commonly detected in TNBCs (Chang et al., 

2015), associated with cell migration in vitro and metastasis in vivo (Vimalraj et al., 2013). 

The above described miRNAs matched 50 gene-targets from the 80-probe signature. In 

our study, hsa-miR-200c* and -29c have been associated with HJURP expression levels in G1, 

hsa-miR-19b-1* with CXCR6 in G2, and hsa-miR-17 with CTSK in G3, which are among the 

most important genes in the signature. None of these associations, however, have been reported 

in the literature. On the other hand, studies have demonstrated hits on the gene regulation 

between hsa-miR-142-5p and CD24 (Venkatesan et al., 2015), hsa-miR-29 and DNMT3B 

(Morita et al., 2013; Nguyen et al., 2011), hsa-miR-142-3p and EGR2 (Lagrange et al., 2013), 

hsa-miR-150 and EGR2 (Q. Wu et al., 2010), hsa-miR-34a and IKZF3 (Rodriguez-Ubreva et al., 

2014), hsa-miR-150 and MIAT (Zhu et al., 2016), hsa-miR-342-3p and PSMG3 (Czimmerer et 
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al., 2016; Wang et al., 2016), hsa-miR-17 and TIMP3 (Yang et al., 2013). Our results further 

suggested an important correlation between miRNAS and gene expression values in both Basal 

I and Basal II, identified by this in silico approach. These and other correlations are, however, 

highly complex and not fully understood. Additional analysis using in vitro and in vivo models 

are required to validate our achievements. 

 

 

7.4.3 Genomic Aberrations Further Characterise Basal II and Basal I 

Subgroups 

Basal-like and triple-negative tumours exhibit the highest frequencies of genomic gains and 

losses in comparison to other breast cancer subtypes (Engebraaten et al., 2013). Significant 

aberrations observed in this study confirmed the genomic instability among basal-like and 

further differentiated the two subgroups. The most common aberrations delineating Basal II, 

with respect to Basal I, occurred on the chromosomes 1, 3, 4, 5, 8, 10, 17 and X.  

Gains in 1q, 3q, 8q, 10p and 17q have been identified in our analysis and previously 

reported in triple-negative tumours (Engebraaten et al., 2013; Loo et al., 2011). Overall, gains 

on chromosome 1q are the most frequent CNAs detected in breast carcinomas and are normally 

complex and discontinuous (Yu et al., 2009). Amplicons of 1q, 8p and 10p have been also 

described. These amplicons have contributed to the molecular understanding of this disease and, 

specially, of basal-like intrinsic subtype (Vincent-Salomon et al., 2007). For instance, 

amplifications in 8q21 have been associated with high tumour grade, high levels of Ki67 and 

other proliferation markers, including MYC, MDM2 and CCND1 (Choschzick et al., 2010). 

Gains in 10p have further differentiated triple-negative cancers (Loo et al., 2011), and in 17q25 

have distinguished BRCA1-mutated tumours (Toffoli et al., 2014). 

Losses in 4q, 5q, 8p, Xp and Xq have been defined as key aberrations within basal-like 

tumours in our analysis and among other breast cancer studies (Burstein et al., 2014; Weigman 

et al., 2012). Frequent losses in 4q and 5q in BRCA1-mutated tumours have distinguished them 

from sporadic neoplasms. In particular, the loss in 5q has impacted the expression of several 

BRCA1-dependent genes involved in DNA repair, such as RAD17 and RAD51 (Johannsdottir et 

al., 2006). High incidence rates of gains in 5q14 have also been associated with a poor 

prognosis in BLBCs (Thomassen et al., 2013). Other evidence suggests that aberrations on the 

X chromosome are common to both BRCA1-mutated and sporadic tumours (Richardson et al., 

2006). 
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Overall, these aberrations yielded an additional characterisation of Basal I and Basal II. 

The increasing PGA, or genome instability, from one subgroup to the other complemented the 

80-probe signature via the transcriptomic assessment, which is still considered more 

representative of cellular processes at the proteomic scale (Tyanova et al., 2016). Although the 

identified CNA did not show a direct correlation with the 80 probes’ expression levels, 

generally it may lead to widespread disruptions beyond the proposed signature. Ultimately, the 

above described gains and losses in cytobands – supported by a range of distinct approaches in 

the literature – further corroborate the differentiation of basal-like subgroups with divergent 

clinical features and survival outcomes. 

 

 

7.4.4 Consensus on the Analysis of Basal-like Breast Cancer Subtypes: a 

Literature Overview 

In this section, we further established a consensus on the description of basal-like 

subgroups (Basal I and Basal II) by comparing our results with other achievements across the 

literature (Burstein et al., 2014; Jézéquel et al., 2015; Lehmann et al., 2011; Sabatier et al., 

2011), as per the focus of each study. Notably, most of them have centred on the classification 

of triple-negative entities, a more heterogeneous group than basal-like. For instance, among the 

six intrinsic TNBC subtypes defined by Lehmann et al. (2011), three were considered relevant 

for further comparisons against the proposed basal-like subgroups: the basal-like (BL1 and 

BL2) and the immunomodulatory (IM). The groups were described based on cell cycle 

regulation, DNA damage response and immunomodulatory related-genes, respectively. These 

genes hint to the involvement of similar mechanisms differentiating between Basal I and Basal 

II, indicating that both classifications are somehow related. Genes (G1) with high node 

centrality values in Basal II, such as HJURP and TPX2 have been linked to aberrant 

proliferation networks, cell invasion and metastasis in breast cancer, in line with the definition 

of BL1 (Lehmann et al., 2011). In addition, genes (G2) defining the Basal I subgroup, including 

CXCR6, HCST, C3AR1, GBP4, LY96, ANKRD22, FPR3 and FCGR2A, have association with 

immune activation and inflammatory response, closer to IM (Lehmann et al., 2011). Major 

regulations involving these genes support the existence of the two subgroups, even though the 

pool of samples was considerably distinct, BLBCs and TNBCs. 

In the recent classification of TNBCs performed by Burstein et al. (2014) (Burstein et 

al., 2014), two groups were described: the basal-like immune-activated (BLIA) and immune-
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suppressed (BLIS) subtypes, corresponding to the best and worst prognosis, respectively. In 

BLIA, tumours display an over-expression of Stat signal transduction molecules and cytokines; 

in BLIS, high levels of the immunosuppressing molecule VTCN1. The mechanisms defining 

BLIA follow the characteristics of Basal I, and BLIS follows Basal II. For example, Basal I and 

BLIA (Burstein et al., 2014) contain common genes and/or genes belonging to the same family, 

such as CXCL9/10/11/13, GBP4/5 and CD2/24. Similarly, Jézéquel et al. (2015) identified two 

relevant subtypes: basal-like with low immune response and high M2-like macrophages (C2), 

and basal-enriched with high immune response and low M2-like macrophages (C3). The 

defined basal-like and basal-enriched groups shared evident similarities with Basal II and Basal 

I, respectively, and corroborated with our study in terms of probe signature and functionality. 

With regards to the TNBC classification, however, Lehmann et al. (2011), Burstein et al. (2014) 

and Jézéquel et al. (2015) partially support each other. 

An alternative approach to differentiating two subgroups of basal-like – associated with 

either a low or high risk of disease relapse – has been tested by Hallett et al. (2012), using a 14-

gene signature. Among the genes in the signature, RPL3 and GPR27 were listed as key markers 

of relapse, while RPL36AL and GPR65 appeared as variants in the 80 survival-related probes. In 

the same direction, Sabatier et al. (2011) identified a 28-kinase metagene signature – associated 

with disease-free survival and immune response – used to divide the BLBCs into two groups: 

‘Immune High’ and ‘Immune Low’. This approach revealed key genes, including IL2RG/B, 

GBP2, CCR5/7, CXCR3/5/6 and CXCL9/13, related to their family members in our signature, 

such as IL2RA, GBP4, CCR1, CXCR6 and CXCL11. These genes appeared over-expressed in 

‘Immune High’ and in Basal I subgroup, when compared to ‘Immune Low’ and Basal II 

(Sabatier et al., 2011). 

Integrating these observations, there is a clear consensus on the segregation of basal-

like breast cancers into at least two subgroups. Basal I (Immune Active) show molecular 

overlaps and phenotypic similarities with BLIA (Burstein et al., 2014), IM (Lehmann et al., 

2011) and C3 (Jézéquel et al., 2015); Basal II (High Proliferative) matched with BLIS (Burstein 

et al., 2014) and C2 (Jézéquel et al., 2015). The comprehensive genomic and transcriptomic 

characterisation of the two subgroups, provided in this study, will lead to the better 

understanding of the mechanisms involved in basal-like tumours and to the identification of 

groups of patients with distinct disease outcome, supported by additional survival features 

(Hallett et al., 2012; Sabatier et al., 2011). The latter is crucial for improving the clinical 

decision-making and for helping tailor treatments that are focused on the immune system 

manipulation and the cell cycle pathway intervention. In general, tumours with activated 

immune response have shown a favourable prognosis (Bertucci et al., 2012) and are likely to 
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respond to chemotherapy (Sabatier et al., 2011), whereas the high proliferative ones have 

revealed increased risk of metastasis and recurrence (Fadare & Tavassoli, 2008). In this context, 

patients at a low risk should follow more conservative therapies and those at high risk should 

receive more effective drugs for improving individual response, towards a more personalised 

medicine. 

 

 

7.5 Conclusion 

 

Studies have demonstrated that the heterogeneity of BLBCs extends beyond the classic 

immunohistochemistry. Although several clinicopathological features have been used to 

discriminate between low- and high-risk patients, the identification of novel biomarkers with 

prognostic value remains an urgent need for improving breast cancer management. The 80-

probe signature defined in this study, associated with varying survival outcomes, contains 

putative markers of disease progression and represents a promising asset for clinical 

applications. The integrated assessment of miRNA expression and CNA information, 

ultimately, contributes towards the definition of more comprehensive profiles of basal-like 

tumours. The importance of defining groups-at-risk of BLBCs is reflected in the impact of 

survival-related features in clinical settings and, more importantly, in therapy response. 
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7.7 Supporting Information 

 

Supporting Information – Table 7.6, Table 7.7 and Table 7.8 

Basal-like samples classification into Basal I and Basal II, and the centroids defining them. 

Tables 7.6 and 7.7 list the sample IDs for each basal-like subgroup, Basal I and Basal II; 

centroids are provided in Table 7.8. Available online: doi:10.1186/s12920-017-0250-9 

Table 7.6 Basal-like samples classification for the validation set 

Table 7.7 Basal-like samples classification for the validation set 

Table 7.8 The centroids computed for differentiating Basal I and Basal II 

 

 

Supporting Information – Table 7.9, Table 7.10 and Table 7.11 

The annotation is based on the Database for Annotation, Visualization and Integrated Discovery 

(DAVID). Available online: doi:10.1186/s12920-017-0250-9 

Table 7.9 The functional annotation of G1 probes according to DAVID 

Table 7.10 The functional annotation of G2 probes according to DAVID 

Table 7.11 The functional annotation of G3 probes according to DAVID 
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Supporting Information – Table 7.12 

This table contains the p-values computed for the difference in expression levels between basal-

like subgroups and control samples. 

 

Table 7.12 MicroRNAs differentiating Basal I and Basal II 

MicroRNA Training Set Validation Set 

CRINCR2000005427 2.80E-04 1.10E-03 

A_25_P00012305 2.80E-04 6.80E-03 

A_25_P00012357 4.00E-04 2.70E-03 

A_25_P00012177 1.30E-04 6.30E-03 

A_25_P00012086 4.90E-03 1.60E-04 

A_25_P00010204 6.30E-03 9.20E-03 

A_25_P00014844 2.00E-04 4.10E-06 

A_25_P00011016 2.20E-03 5.50E-05 

A_25_P00012271 6.30E-06 4.70E-04 

A_25_P00012354 2.00E-07 1.50E-05 

A_25_P00014847 8.70E-06 2.90E-04 

CRINCR2000005084 1.20E-04 4.40E-03 

A_25_P00012274 6.70E-03 2.00E-03 

A_25_P00013484 5.60E-04 8.00E-03 

A_25_P00012013 4.80E-03 9.50E-03 

A_25_P00013163 5.30E-04 1.90E-03 

A_25_P00013151 5.00E-04 2.00E-03 

A_25_P00013841 1.90E-03 4.20E-04 

A_25_P00013469 1.80E-04 9.50E-03 
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Supporting Information – Table 7.13  

This table contains miRNAs and gene targets with the respective expression levels in Basal I. 

 

Table 7.13 MicroRNAs and gene targets in Basal I 

Gene ID 
Mature  

miRNA 

miRNA  

Exprression 

Gene  

Symbol 

Gene  

Expression 

56652 hsa-miR-140-3p 10.25586 C10orf2 6.337445 

6373 hsa-miR-140-3p 10.25586 CXCL11 7.046886 

79047 hsa-miR-140-3p 10.25586 KCTD15 6.504304 

8228 hsa-miR-140-3p 10.25586 PNPLA4 5.694018 

5589 hsa-miR-140-3p 10.25586 PRKCSH 8.599771 

23223 hsa-miR-140-3p 10.25586 RRP12 7.704964 

10494 hsa-miR-140-3p 10.25586 STK25 8.297879 

1E+08 hsa-miR-142-3p 13.66798 CD24 12.73802 

1959 hsa-miR-142-3p 13.66798 EGR2 8.11905 

8228 hsa-miR-142-3p 13.66798 PNPLA4 5.694018 

6451 hsa-miR-142-3p 13.66798 SH3BGRL 9.514529 

56652 hsa-miR-142-5p 9.940696 C10orf2 6.337445 

1E+08 hsa-miR-142-5p 9.940696 CD24 12.73802 

1050 hsa-miR-142-5p 9.940696 CEBPA 8.541949 

1959 hsa-miR-142-5p 9.940696 EGR2 8.11905 

26234 hsa-miR-142-5p 9.940696 FBXL5 6.106371 

2359 hsa-miR-142-5p 9.940696 FPR3 8.746832 

3290 hsa-miR-142-5p 9.940696 HSD11B1 6.887209 

83593 hsa-miR-142-5p 9.940696 RASSF5 8.677596 

7078 hsa-miR-142-5p 9.940696 TIMP3 8.607555 

1230 hsa-miR-150 12.74988 CCR1 6.603287 

1959 hsa-miR-150 12.74988 EGR2 8.11905 

26234 hsa-miR-150 12.74988 FBXL5 6.106371 

440823 hsa-miR-150 12.74988 MIAT 6.040073 

84722 hsa-miR-155 10.56577 PSRC1 5.536997 

79863 hsa-miR-155 10.56577 RBFA 6.772597 

9447 hsa-miR-17 9.7715 AIM2 7.817965 

57673 hsa-miR-17 9.7715 BEND3 6.275244 

1056 hsa-miR-17 9.7715 CEL 6.260176 

1513 hsa-miR-17 9.7715 CTSK 10.41549 

1959 hsa-miR-17 9.7715 EGR2 8.11905 
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26234 hsa-miR-17 9.7715 FBXL5 6.106371 

8228 hsa-miR-17 9.7715 PNPLA4 5.694018 

149628 hsa-miR-17 9.7715 PYHIN1 6.295934 

6641 hsa-miR-17 9.7715 SNTB1 7.336399 

7078 hsa-miR-17 9.7715 TIMP3 8.607555 

10663 hsa-miR-19b-1* 7.189607 CXCR6 6.882271 

2212 hsa-miR-19b-1* 7.189607 FCGR2A 8.539242 

3290 hsa-miR-19b-1* 7.189607 HSD11B1 6.887209 

83463 hsa-miR-19b-1* 7.189607 MXD3 6.601417 

9046 hsa-miR-200c* 6.543946 DOK2 6.324262 

55355 hsa-miR-200c* 6.543946 HJURP 7.261004 

3559 hsa-miR-200c* 6.543946 IL2RA 6.139334 

84722 hsa-miR-200c* 6.543946 PSRC1 5.536997 

23223 hsa-miR-200c* 6.543946 RRP12 7.704964 

9046 hsa-miR-22 14.65232 DOK2 6.324262 

2760 hsa-miR-22 14.65232 GM2A 7.595457 

3290 hsa-miR-22 14.65232 HSD11B1 6.887209 

83463 hsa-miR-22 14.65232 MXD3 6.601417 

8228 hsa-miR-22 14.65232 PNPLA4 5.694018 

10494 hsa-miR-22 14.65232 STK25 8.297879 

7078 hsa-miR-22 14.65232 TIMP3 8.607555 

64581 hsa-miR-29a 14.15218 CLEC7A 6.128213 

1789 hsa-miR-29a 14.15218 DNMT3B 5.943194 

2212 hsa-miR-29a 14.15218 FCGR2A 8.539242 

2326 hsa-miR-29a 14.15218 FMO1 7.385919 

79047 hsa-miR-29a 14.15218 KCTD15 6.504304 

440823 hsa-miR-29a 14.15218 MIAT 6.040073 

22974 hsa-miR-29a 14.15218 TPX2 7.51496 

64581 hsa-miR-29c 12.26873 CLEC7A 6.128213 

1789 hsa-miR-29c 12.26873 DNMT3B 5.943194 

2212 hsa-miR-29c 12.26873 FCGR2A 8.539242 

2326 hsa-miR-29c 12.26873 FMO1 7.385919 

79047 hsa-miR-29c 12.26873 KCTD15 6.504304 

440823 hsa-miR-29c 12.26873 MIAT 6.040073 

22974 hsa-miR-29c 12.26873 TPX2 7.51496 

84253 hsa-miR-29c* 7.856357 GARNL3 5.846762 

55355 hsa-miR-29c* 7.856357 HJURP 7.261004 

54069 hsa-miR-29c* 7.856357 MIS18A 6.656334 



Bioinformatics in Breast Cancer Chapter 7 

 

229 

 

83463 hsa-miR-342-3p 10.24132 MXD3 6.601417 

84262 hsa-miR-342-3p 10.24132 PSMG3 7.054041 

171558 hsa-miR-342-3p 10.24132 PTCRA 5.784044 

5788 hsa-miR-342-3p 10.24132 PTPRC 6.505452 

7078 hsa-miR-342-3p 10.24132 TIMP3 8.607555 

79058 hsa-miR-342-5p 8.809464 ASPSCR1 9.870704 

837 hsa-miR-342-5p 8.809464 CASP4 9.267788 

10320 hsa-miR-342-5p 8.809464 IKZF1 7.596667 

84722 hsa-miR-342-5p 8.809464 PSRC1 5.536997 

6373 hsa-miR-34a 13.13989 CXCL11 7.046886 

79980 hsa-miR-34a 13.13989 DSN1 6.882759 

2212 hsa-miR-34a 13.13989 FCGR2A 8.539242 

26191 hsa-miR-34a 13.13989 GPR65 6.040714 

22806 hsa-miR-34a 13.13989 IKZF3 5.625264 

8228 hsa-miR-34a 13.13989 PNPLA4 5.694018 

719 hsa-miR-361-3p 8.76375 C3AR1 7.144413 

1050 hsa-miR-361-3p 8.76375 CEBPA 8.541949 

2760 hsa-miR-361-3p 8.76375 GM2A 7.595457 

440823 hsa-miR-361-3p 8.76375 MIAT 6.040073 

6838 hsa-miR-361-3p 8.76375 SURF6 8.59528 

7078 hsa-miR-361-3p 8.76375 TIMP3 8.607555 
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Supporting Information – Table 7.14 

This table contains miRNAs and gene targets with the respective expression levels in Basal II. 

 

Table 7.14 MicroRNAs and gene targets in Basal II 

Gene ID 
Mature  

miRNA 

miRNA  

Exprression 

Gene  

Symbol 

Gene  

Expression 

56652 hsa-miR-140-3p 9.640101 C10orf2 6.677458 

6373 hsa-miR-140-3p 9.640101 CXCL11 6.155282 

79047 hsa-miR-140-3p 9.640101 KCTD15 6.723827 

8228 hsa-miR-140-3p 9.640101 PNPLA4 5.594859 

5589 hsa-miR-140-3p 9.640101 PRKCSH 8.906658 

23223 hsa-miR-140-3p 9.640101 RRP12 8.093349 

10494 hsa-miR-140-3p 9.640101 STK25 8.560094 

1E+08 hsa-miR-142-3p 12.54444 CD24 13.56376 

1959 hsa-miR-142-3p 12.54444 EGR2 7.264601 

8228 hsa-miR-142-3p 12.54444 PNPLA4 5.594859 

6451 hsa-miR-142-3p 12.54444 SH3BGRL 8.942829 

56652 hsa-miR-142-5p 8.828202 C10orf2 6.677458 

1E+08 hsa-miR-142-5p 8.828202 CD24 13.56376 

1050 hsa-miR-142-5p 8.828202 CEBPA 7.954701 

1959 hsa-miR-142-5p 8.828202 EGR2 7.264601 

26234 hsa-miR-142-5p 8.828202 FBXL5 5.901917 

2359 hsa-miR-142-5p 8.828202 FPR3 7.741393 

3290 hsa-miR-142-5p 8.828202 HSD11B1 6.081242 

83593 hsa-miR-142-5p 8.828202 RASSF5 7.743423 

7078 hsa-miR-142-5p 8.828202 TIMP3 7.92518 

1230 hsa-miR-150 11.01249 CCR1 6.077411 

1959 hsa-miR-150 11.01249 EGR2 7.264601 

26234 hsa-miR-150 11.01249 FBXL5 5.901917 

440823 hsa-miR-150 11.01249 MIAT 5.6395 

84722 hsa-miR-155 9.509899 PSRC1 5.721769 

79863 hsa-miR-155 9.509899 RBFA 7.037016 

9447 hsa-miR-17 10.43675 AIM2 6.815321 

57673 hsa-miR-17 10.43675 BEND3 6.554452 

1056 hsa-miR-17 10.43675 CEL 6.667653 

1513 hsa-miR-17 10.43675 CTSK 9.360128 

1959 hsa-miR-17 10.43675 EGR2 7.264601 

26234 hsa-miR-17 10.43675 FBXL5 5.901917 
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8228 hsa-miR-17 10.43675 PNPLA4 5.594859 

149628 hsa-miR-17 10.43675 PYHIN1 5.734864 

6641 hsa-miR-17 10.43675 SNTB1 7.038167 

7078 hsa-miR-17 10.43675 TIMP3 7.92518 

10663 hsa-miR-19b-1* 7.597889 CXCR6 5.992908 

2212 hsa-miR-19b-1* 7.597889 FCGR2A 7.721801 

3290 hsa-miR-19b-1* 7.597889 HSD11B1 6.081242 

83463 hsa-miR-19b-1* 7.597889 MXD3 6.78071 

9046 hsa-miR-200c* 6.780434 DOK2 5.848977 

55355 hsa-miR-200c* 6.780434 HJURP 7.789458 

3559 hsa-miR-200c* 6.780434 IL2RA 5.801549 

84722 hsa-miR-200c* 6.780434 PSRC1 5.721769 

23223 hsa-miR-200c* 6.780434 RRP12 8.093349 

9046 hsa-miR-22 14.10687 DOK2 5.848977 

2760 hsa-miR-22 14.10687 GM2A 6.933033 

3290 hsa-miR-22 14.10687 HSD11B1 6.081242 

83463 hsa-miR-22 14.10687 MXD3 6.78071 

8228 hsa-miR-22 14.10687 PNPLA4 5.594859 

10494 hsa-miR-22 14.10687 STK25 8.560094 

7078 hsa-miR-22 14.10687 TIMP3 7.92518 

64581 hsa-miR-29a 13.6678 CLEC7A 5.788349 

1789 hsa-miR-29a 13.6678 DNMT3B 6.369691 

2212 hsa-miR-29a 13.6678 FCGR2A 7.721801 

2326 hsa-miR-29a 13.6678 FMO1 6.631723 

79047 hsa-miR-29a 13.6678 KCTD15 6.723827 

440823 hsa-miR-29a 13.6678 MIAT 5.6395 

22974 hsa-miR-29a 13.6678 TPX2 8.119814 

64581 hsa-miR-29c 11.81329 CLEC7A 5.788349 

1789 hsa-miR-29c 11.81329 DNMT3B 6.369691 

2212 hsa-miR-29c 11.81329 FCGR2A 7.721801 

2326 hsa-miR-29c 11.81329 FMO1 6.631723 

79047 hsa-miR-29c 11.81329 KCTD15 6.723827 

440823 hsa-miR-29c 11.81329 MIAT 5.6395 

22974 hsa-miR-29c 11.81329 TPX2 8.119814 

84253 hsa-miR-29c* 7.570919 GARNL3 6.125192 

55355 hsa-miR-29c* 7.570919 HJURP 7.789458 

54069 hsa-miR-29c* 7.570919 MIS18A 7.022054 

83463 hsa-miR-342-3p 9.43096 MXD3 6.78071 

84262 hsa-miR-342-3p 9.43096 PSMG3 7.342099 

171558 hsa-miR-342-3p 9.43096 PTCRA 5.464495 
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5788 hsa-miR-342-3p 9.43096 PTPRC 5.768135 

7078 hsa-miR-342-3p 9.43096 TIMP3 7.92518 

79058 hsa-miR-342-5p 7.905677 ASPSCR1 10.02142 

837 hsa-miR-342-5p 7.905677 CASP4 8.496007 

10320 hsa-miR-342-5p 7.905677 IKZF1 6.690869 

84722 hsa-miR-342-5p 7.905677 PSRC1 5.721769 

6373 hsa-miR-34a 12.65928 CXCL11 6.155282 

79980 hsa-miR-34a 12.65928 DSN1 7.176337 

2212 hsa-miR-34a 12.65928 FCGR2A 7.721801 

26191 hsa-miR-34a 12.65928 GPR65 5.66744 

22806 hsa-miR-34a 12.65928 IKZF3 5.405269 

8228 hsa-miR-34a 12.65928 PNPLA4 5.594859 

719 hsa-miR-361-3p 8.301586 C3AR1 6.422074 

1050 hsa-miR-361-3p 8.301586 CEBPA 7.954701 

2760 hsa-miR-361-3p 8.301586 GM2A 6.933033 

440823 hsa-miR-361-3p 8.301586 MIAT 5.6395 

6838 hsa-miR-361-3p 8.301586 SURF6 8.828021 

7078 hsa-miR-361-3p 8.301586 TIMP3 7.92518 
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Supporting Information – Figure 7.6 

Figure 7.6 The heat map of 400 probes in METABRIC training set 

This heat map shows the hierarchical clustering of 115 basal-like samples based on the probes 

expression values. There are two major clusters representing Basal I (turquoise) and Basal II 

(coral). From these features, the top 80 best discriminating between the major groups the most 

are denoted in orange. The red and blue colours represent relative over- and under-expressions 

respectively. The expression values are normalised across the samples.  
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Supporting Information – Text 7.1 

Text 7.1 Basal-like biomarkers and drug-targets 

Among all breast cancers, basal-like and triple-negative are the greatest challenges for both 

oncologists and patients due to their unpredicted behaviour, high rates of recurrence and 

mortality. Although tumours within these types show similar clinicopathological features, they 

exhibit highly variable therapy response and disease outcome (Bosch et al., 2010). There is no 

baseline protocol for treating BLBCs or TNBCs (Prat et al., 2013). The current standard 

management usually consists of surgery, radiotherapy and chemotherapy, with the 

administration of cytotoxic drugs, alone or in combination (Toft & Cryns, 2011). The 

aggressive regimens are highly favourable to patient’s response as they show immediate effect 

on cell proliferation and tumour growth. On the other hand, these regimens increase the toxicity 

– with the destruction of healthy normal cells – and lead to mild or severe adverse effects 

(Crown et al., 2012). Drug resistance and disease remission are, yet, additional issues to be 

considered (De Laurentiis et al., 2010).  

The most common chemotherapeutic approach to treating advanced BLBCs or TNBCs 

is based on anthracycline and taxane combinations in the first line, followed by capecitabine as 

disease progresses (Oakman et al., 2010). The use of platinum-derived agents has also impacted 

the management of BRCA1-mutated tumours (Drost & Jonkers, 2014). Recent tests suggest the 

use of carboplatin as oppose to cisplatin, which was previously the most effective agent against 

triple-negative breast cancers (Carmo-Pereira et al., 1989; Kolarić & Vukas, 1991; Martin et al., 

1991). However, there is a lack of evidence from random assignment trials to support the 

preferred use of platinum compounds over standard cytotoxic agents for TNBC, especially for 

early-stage disease. Although several clinical trials are currently ongoing in this population, 

further investigation of novel drugs is required, regardless of the stage at diagnosis (Crown et 

al., 2012). 

Targeted therapies are used to precisely identify and attack cancer cells by affecting 

molecular pathways (Orlando et al., 2010). Drugs may directly interact with growth factor 

receptors, DNA-repair and apoptosis regulators, and angiogenesis mediators blocking cancer 

progression. Despite the potential of targeted therapies, clinically the drugs are rarely 

administered as a single agent due to the limited therapeutic effectiveness and onset of 

resistance. This approach is not likely to replace cytotoxic drugs in the foreseeable future; it will 

rather be used in combination. Within the next decades, the emergence of multi-targeting drugs 

is expected, not only for cancer but for other diseases of polygenetic nature. The concept of 

multi-targeting has emerged with the application of computational resources and network-based 

approach to define strong compounds for the different stages of clinical trials (Brandl et al., 

2014; Soldi et al., 2013). In this context, medical advances have led to the identification of a 
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variety of potential targets and the development of anticancer drugs and new therapy 

combinations for breast cancer (Zhou et al., 2009).  

The traditional way of drug discovery – also referred to as de novo drug discovery – is a 

complex, time-consuming and expensive process that has currently a high rate of failure 

(Strittmatter, 2014). From the initial identification of a compound to determining its 

pharmacological and toxicological activity in vitro (preclinical models) and in vivo (clinical 

trials) usually requires an average of 13 years of research, before its approval and 

commercialization (Gupta et al., 2013). Although the billions invested by pharmaceutical 

companies on drug discovery, development and marketing, the number of new approved 

chemical compound is significantly lower in comparison to that of failed drugs. The continued 

rising costs of this market have driven the industry towards the exploration of new strategies in 

the field. 

The process of drug rediscovery – also known as redirection, repurposing, repositioning 

and reprofiling –, or finding new uses for existing compounds outside the scope of the original 

indication, is rather promising (Ashburn & Thor, 2004; Langedijk et al., 2015). It requires 

significantly less time for approval due to the wealth of preclinical and clinical information 

relating to toxicity, pharmacokinetic and pharmacodynamics effects. Furthermore, the 

development of drugs should cost significantly less compared to rationally designed new drugs. 

Drug rediscovery brings new opportunities to cancer research for exploiting alternative 

mechanisms of thousands of approved drugs, generics, and late-stage development agents, and 

promoting an open-source drug discovery along with the pharmaceutical industry (Napper & 

Mucke, 2015). Databases aim to convert fundamental information into meaningful and valuable 

knowledge and broad the horizons to clinical applications. In sheer volume, however, databases 

present qualitative and quantitative challenges. A step further involves the drug reformulation, 

dosage, delivery mechanisms and combination therapies. 

High-throughput screening (HTS), high content screening (HTC), Chemoinformatics, 

Bioinformatics, as well as Network and Systems Biology have been used in conjunction with 

available information on known targets, drugs, biomarkers and pathways. These sources have 

been designed to accelerate the timelines of rediscovery and development of candidate drugs. In 

particular, great effort has been devoted to generate well-annotated repositories such as 

DrugBank, Therapeutic Target Database (TTD), Cancer Commons, Clearity Foundation, 

ChEMBL, Clinical Trail, Cancer Resource, Comparative Toxicogenomic Database (CTD), 

Kegg Drug, MetaDrug, My Cancer Genome, PharmGKB, PubChem, SuperTarget, Trends in the 

Exploration of Novel Drug targets (TEND) and IUPHAR/BPS Guide to Pharmacology. These 

platforms have linked chemical compounds with their molecular function, mechanisms of action 
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and adverse events. This information supports and expands the biological understanding of 

dynamic variables for planning viable and creative in silico models. 

An example of ‘gene-target’ search, covering large collections from multiple databases, 

is detailed in Table 7.15 . The biomarkers defining basal-like subtype were obtained from 

Chapter 4 and Chapter 7 and the respective compounds were defined across databases. The 

drug-target relations emerged from nine public databases: DrugBank, TTD, Clearity 

Foundation, Clinical Trail, My Cancer Genome, PharmGKB, SuperTarget, TEND and 

IUPHAR. We further demonstrate the application of a kernelization for (α,β,d)-Hitting Set to 

multiple drug selection for cancer therapy (Figure 7.7), indicating that this problem is readily 

scalable to large datasets (Mellor et al., 2010). The proposed approach is critical towards 

decision of future in vitro tests in cell lines. New strategies and techniques for drug discovery 

and development, however, are essential for advancing translational science. It is also 

imperative to identify breast cancer subtypes likely to benefit from a treatment and patients at 

high risk of toxicity.  
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Supporting Information – Table 7.15 

Table containing potential compounds for treating basal-like and triple-negative breast cancers. 

 

Table 7.15 Summary gene targets and corresponding drugs 

Gene Symbol Drugs 

AURKB 

AT9283, AMG900, AZD1152, CYC116, GSK1070916, PF-03814735, R763, 

SNS-314, TOZASERTIB, VX-680, AS703569, DANUSERTIB, BARASERTIB-

hQPA 

CCNE1 BAY1000394, AMG900 

CDKN2A BAY1000394 

CHEK1 

2-(CYCLOHEXYLAMINO)BENZOIC ACID, 3-(1H-BENZIMIDAZOL-2-YL)-

1H-INDAZOLE, 6-MORPHOLIN-4-YL-9H-PURINE, 7-

HYDROXYSTAUROSPORINE, AZD7762, AZD7762, ISOGRANULATIMIDE, 

N-(5,6-DIPHENYLFURO[2,3-D]PYRIMIDIN-4-YL)GLYCINE, PF-477736, SB-

202190, SB-203580, XL844, AZD7762, SB-218078 

EIF2AK1 
BARASERTIB-hQPA, BOSUTINIB, ERLOTINIB, FORETINIB, GSK690693, 

RUBOXISTAURIN, SB-203580 

GABBR2 BACLOFEN, GABAPENTINE 

GABRP ADINAZOLAM, ALPRAZOLAM, 

MAP2 SULINDAC, AST-487, ERLOTINIB, LESTAURTINIB, 

MELK 
FORETINIB, KW-2449, LESTAURTINIB, MIDOSTAURIN, NVP-TAE684, 

STAUROSPORINE, SU-14813, SUNITINIB, TOZASERTIB 

MMP7 MARIMASTAT, PRINOMASTAT 

PRKX 
ERLOTINIB, GSK690693, KW-2449, LESTAURTINIB, MIDOSTAURIN, 

RUBOXISTAURIN, SB-203580, STAUROSPORINE 

SLC7A5 GABAPENTINE 

STK25 
AST-487, BOSUTINIB, LESTAURTINIB, MIDOSTAURIN, SB-218078, 

STAUROSPORINE, SU-14813, SUNITINIB 

TTK 
AST-487, KW-2449, LESTAURTINIB, NVP-TAE684, PAZOPANIB, 

SAUROSPORINE, SU-14813, SUNITINIB 
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Supporting Information – Figure 7.7 

Figure 7.7 Network analysis of multiple drug targets for breast cancer therapy 

The image was generated using the Gephi software. Genes and drugs are defined as nodes, 

connected by edges that show association between genes and putative drug targets. Genes are 

represented by pink nodes while drugs are represented by blue nodes (a contribution from 

Ademir Gabardo). Alternatively, this association may be expanded by applying hitting set hits 

to all selected targets at least once based on the kernelisation approach for a (α,β,d)-Hitting Set 

(Mellor et al., 2010).  
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CHAPTER 8 

 

8. CONCLUDING REMARKS 

 

Chapter 8, the final chapter, draws on the conclusions of the previous chapters and addresses 

the research hypotheses and questions raised in Chapter 1. The 8.1 Final Statements 

summarizes the impact of the devised bioinformatics methods on the analysis of the breast 

cancer disease, which prompt a more stringent assignment of intrinsic subtype labels in the 

METABRIC data set. The variety of prediction models and measures using machine learning 

algorithms indicates that the relation between molecular signatures subtype-specific and overall 

classification can be highly complex and counterintuitive. Intrinsic subtypes are not sufficiently 

well understood. After more than a decade of research conducted in molecular breast cancer 

classification, there still is no consensus on either the number or definition of intrinsic subtypes. 

Novel methods and applications are mandatory to support the constantly evolving high-

throughput 'omics' technologies, towards the elucidation of the mechanisms underlying breast 

cancer. The course of breast cancer research is further delineated in 8.2 Future Directions and 

emphasize that ‘divide and conquer’ schemes consist in the best temporary solution for effective 

personalised medicine. Finally, 8.3 Closing Note summarizes the major contribution of this 

thesis to fundamental and clinical research. 
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8.1 Final Statements 

 

Microarray technologies, at the time of their inception, were considered a new prospect in 

cancer research and oncology practice with the hope that within a decade diseases would be 

deeply understood. The robust analysis and interpretation of microarray gene expression data 

have provided a plethora of unique accomplishments and challenges. The high-throughput 

molecular profiles showed the immense potential of this technique for breast cancer subtyping 

and prediction. Notably, it became clear that breast cancer is not a single disease, but a 

collection of independent entities with significant differences in gene expression patterns and 

clinical outcomes. These entities, or breast cancer subtypes, have been thoroughly investigated 

in the last decades, and in this thesis from both theoretical and practical perspectives. The 

standard methods here applied, nevertheless, were exclusive in the form and reportage for the 

disease investigation; used to address the questions posed in Chapter 1. 

  

“How many groups or different subtypes could be clearly identified in 

breast cancer disease using gene expression microarray data? 

 Are they molecularly and clinically well defined?” 

 

For addressing these questions, the present study considered exploring the use of 

standard clustering methods, as an alternative to common hierarchical clustering approaches, to 

improve the classification of breast cancer subtypes. MST-kNN clustering was applied to 

illustrate the complexity of this disease and, at the same time, investigate the consistency of 

current intrinsic subtypes. These applications were motivated by the dearth of attempts using 

unconventional methods in identifying homogeneous clusters. Early experiments – later 

introduced in Chapter 5 (Supporting Information – Figure 5.6, Figure 5.7, Figure 5.8, Table 

5.7 and Table 5.8) revealed connections between samples with similar gene expression profiles 

in the METABRIC data set. However, the same clustering methods have exposed major groups 

(IntClusts), not comparable with those from hierarchical approaches; consequently, not 

comparable with the current breast cancer classification (or intrinsic subtypes). 

The MST-kNN clusters showed single connections as well as large and complete 

clusters generated from robust data. This data also indicated that the five intrinsic subtypes 

(luminal A, luminal B, HER2-enriched, basal-like and normal-like) assigned using the PAM50 
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method have a regular distribution on the METABRIC cluster. For this reason, we stand for the 

well-established subtypes and further investigate each one. In Chapter 4, we portrayed novel 

biomarkers explaining the five subtypes by exploring the ability of the CM1 score. Additionally, 

in Chapter 5, we refined the original labels and improved class prediction in the METABRIC 

and ROCK data sets using an iterative approach. The new labelling showed more reliable 

clinicopathological features and more consistent survival outcomes across the intrinsic subtypes, 

making them molecularly and clinically better defined (Figure 8.1 and Figure 8.2). The new 

labels are of great value to breast cancer research and future translational science, as 

inconsistent assignments may lead to misguided information in the field. 

 

“Which gene or signatures are able to individualise the different breast 

cancer subtypes? Are these genes relevant targets for tailored treatment?” 

 

In Chapter 4, we identified 30 novel biomarkers and 12 well-known genes for subtype 

individuation. These genes showed highly discriminative patterns of expression across samples 

for each intrinsic group. We further assessed the ability of these 42 probes in assigning the 

correct subtype labels using 24 different classifiers from the Weka software suite. For 

comparison, the same method was applied to the list of 50 genes from the PAM50 method. 

Towards the development of more reliable strategies, in Chapter 5, we designed an iterative 

approach to select probes that consistently discriminate breast cancer subtypes. Furthermore, in 

Chapter 6, we proposed a novel approach for leveraging the utility of pairwise probes in 

covering both the intrinsic signatures and the subtype individuation. All proposed methods have 

delineated molecular imbalances among subtypes and further support the group-based definition 

use in medical practice. The models devised in this study are promising prediction tools, widely 

applicable to a variety of data types. 

Overall, the signatures we provide are more consistent and in better agreement with the 

distribution of clinical markers (ER, PR and HER2) and patients' overall survival than those 

defined by the PAM50 method. Considering single biomarkers from the signatures, they are 

capable to individualise subtypes, however, may or may not be a surrogate therapeutic targets. 

By exploring drug-target databases, in Chapter 7, we selected putative drugs from distinct 

databases to guide lab experiments for treating basal-like breast cancer, one of the most 

aggressive subtypes. In vitro tests are, however, required to determine effective markers for 

improving treatment response of an individual or a group of patients. 
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Figure 8.1 t-SNE graph of METABRIC samples coloured according to PAM50 

The t-SNE graphs were plotted based on the distance between all METABRIC tumour samples, 

considering the set of 48803 probes, coloured with the respective PAM50 labels. 

 

 

 

 

 

 

 

 

 

The t-SNE graphs were plotted based on the distance between all METABRIC tumour samples, 

considering the set of 48803 probes, coloured with the new refined labels.  

Figure 8.2 t-SNE graph of METABRIC samples coloured using the refined labels 
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“How could molecular data, including genome and transcriptome microarrays, 

be better combined or integrated to improve the understanding of the disease or 

the subtypes’ classification?” 

 

The first data combination is described in Chapter 6 with the introduction of a novel 

structure based on pairwise probes, expanding the information contained in the METABRIC 

transcriptome set. Simple mathematical modelling and well-established methodologies of 

feature selection and data mining were used to uncover molecular imbalances across subtypes. 

The computational framework was motivated by the widespread interest in conducting and 

reporting robust methods to build accurate predictor models. Accordingly, the most 

representative meta-features exhibited extensive predictive power for labelling samples. The 

current systematic approach prove that it is a promising tool for improving the understanding of 

the disease, especially for underlying breast cancer intrinsic subtypes.  

In the second data integration, Chapter 7, we utilised transcriptomic (gene and miRNA 

expression) and genomic (copy number aberration) information to perform a comprehensive 

analysis of basal-like tumours. Thus, we provided an 80-probe signature associated with varying 

survival outcomes, including putative markers of disease progression and promising asset for 

clinical applications. This signature was able to distinguish between two basal-like subgroups 

(Basal I and Basal II) with divergent molecular profiles, clinical features and survival outcomes. 

Furthermore, miRNAs transcripts also correlated with the basal-like subgroups. The genomic 

analysis further differentiated Basal I and Basal II on the percentages of gains/amplifications 

and losses/deletions across samples. These results have demonstrated the heterogeneity of basal-

like tumours beyond the classical immunohistochemistry. 

The innovative assessment of genomic and transcriptomic data presented in this study 

contributes towards a more robust definition of breast cancer. The importance of defining 

groups-at-risk within subtypes is projected on the impact of breast cancer management in the 

clinical setting and, more importantly, in therapy response. Although several clinicopathological 

features have been used to discriminate between low- and high-risk patients, the identification 

of novel molecular features with prognostic value expands the disease overview. By recognising 

them, researchers and clinicians should be able to design more effective tailored therapies for 

patients at high risk; and reduce the prescription of high-dose chemotherapy to individuals at a 

low risk, thus reducing or minimising side effects. 
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“Is it possible to link cell line profiles with the breast cancer subtypes in 

order to provide consistent information for ‘in vitro’ drug tests?” 

 

Cell lines are widely used to investigate the breast cancer clinical pathology and 

molecular heterogeneity. The stratification of tumour lineages according to intrinsic subtypes 

has also changed the functional management of laboratory models. In particular, cancer cell 

cultures are explored to test and validate molecular drivers for group targeted therapies. 

Accordingly, we classified the in vitro models by comparing the gene expression profile of cell 

lines and approximately 2000 primary breast tumours from the METABRIC data set (data not 

shown). The proposed method assessed the CM1 and PAM50 gene lists to classify 75 cell lines 

using an ensemble learning approach. Preliminary results showed an overall consensus on the 

cell lines classification; but a disagreement on the subtype labels attributed to widely used 

lineages, such as BT474, HCC1500, HCC1954, and SKBR3. These cell lines had different 

labelling across studies and platforms. This approach adds a new perspective to effective 

experimental models that are used to investigate intrinsic subtypes for improving the therapeutic 

decisions and the clinical outcomes. This information will be used to filter future lab 

experiments using the drug targets described in Chapter 8. 

 

 

8.2 Future Directions 

 

Microarray profiling has been crucial to the growth and maturation of bioinformatics techniques 

and has also laid a solid basis for the analysis of gene expression signatures. With the increasing 

popularity of microarray analysis, however, the perspective for understanding breast cancer 

disease profoundly change. Irrespective of the contribution of microarray studies, measurement 

techniques usually become obsolete over time. With the advent of new ‘omics’ sciences – 

including genomics, transcriptomics, epigenomics, proteomics, lipidomics, metabolomics, etc. – 

and technologies, gene expression microarrays are unlikely to escape this fate. Next generation 

sequencing is revolutionizing molecular research with the dissection of chromatin 

immunoprecipitation coupled to DNA microarrays (ChIP-chip), DNA (DNA-seq) and RNA 

sequencing (RNA-seq), and whole genome sequencing (WGS); in parallel with the analysis of 

protein chips and a range of other high-throughput measurements. These technologies aim at the 
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collective characterization and quantification of molecular features that may explain the 

structure, function and dynamics of cells, tissues and organisms. They complement microarray 

gene expression data and provide additional knowledge for uncovering the molecular imbalance 

in breast cancers, and within intrinsic subtypes. 

In this thesis, the applied methodologies provide a feasible way to efficiently search the 

entire microarray gene expression space for candidate robust classification sets. A future goal is 

to develop a rank-based enrichment analysis method that compares the different 'omics' 

information according to their abilities in differentiating classes. These classes should, 

ultimately, be more homogeneous than the current intrinsic subtypes and able to compose the 

true taxonomy of breast cancer disease. In this context, the intrinsic pathways and molecular 

imbalances are expected to match the DAVID database, used throughout this thesis, but also 

other databases that remain unexplored. A number of publicly available bioinformatics tools – 

including, but not limited to, GoMiner, EaseGo, GOstat, Onto-express, GoToolBox, FatiGO and 

GOSSIP – reflect the biological processes most pertinent to revealing molecular phenomena and 

associated phenotypes. The power of many of these applications is in highlighting the most 

over-represented signatures, out of a list of hundreds or thousands features, and providing a 

systematic means of understanding data. However, with the increasing collection of complex 

data, actual integrated sources are required for data analysis and interpretation. 

The emerging bioinformatics resources and tools will impose personal and social 

challenges for breast cancer researchers in the next decades. In this scenario, they will provide 

further hints about the relationship between genetic and environmental causes, leading to 

improvements in breast cancer detection and prevention. With regards to the treatment, patients 

will likely benefit from targeted therapies and avoid the risks of chemotherapy toxicity and 

adverse effects. Furthermore, microenvironment and peripheral system disorders in cancer will 

be also considered as primordial factors in the root nature of breast cancer disease. In the broad 

view, immune and inflammatory phenomena are critical, representing some of the most 

promising areas of research in the field. Ultimately, the understanding of individual features and 

major biological networks – within intrinsic subtypes – will allow advances in drug 

development over the next several years for truly tailored therapy in future clinical trials, 

leading toward effective personalised medicine. 

 

 

 



Bioinformatics in Breast Cancer Chapter 8 

 

248 

 

8.3 Closing Note 

 

The contribution of this thesis is to provide an overview of breast cancer research in context of 

applied bioinformatics. Additionally, a variety of powerful techniques for the comprehensive 

investigation of intrinsic subtypes, both at the genomic and transcriptomic level, is also 

employed and described. The implications of methods and techniques are discussed on their 

relevance and potential clinical impact; however, questions remain without answer due to the 

involvement of major, complex signalling pathways in the non-linear disease progression. We 

anticipate that the power of systemic approaches will increase as additional and complementary 

molecular features are defined, including multi-omics sources from the genome, transcriptome, 

epigenome, proteome, lipidome and metabolome. In sheer volume, this approach presents a 

qualitative and quantitative challenge for the future decades. The main goal is to convert this 

precious data into meaningful information, valuable knowledge and to broaden the horizons of 

clinical management. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Bioinformatics in Breast Cancer Chapter 8 

 

249 

 

 


